
Guide to 7.1 Feature
Enhancements
Version 7.1
May 1995
Part No. 000-7748

ii Guide to 7.1 Feature E
Published by INFORMIX® Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “®,” and in numerous other countries worldwide:

INFORMIX and C-ISAM

The following are worldwide trademarks of the indicated owners or their subsidiaries, registered in the
United States of America as indicated by “®,” and in numerous other countries worldwide:

Adobe Systems Incorporated: PostScript

X/OpenCompany Ltd.: UNIX; X/Open

Some of the products or services mentioned in this document are provided by companies other than Informix.
These products or services are identified by the trademark or servicemark of the appropriate company. If you
have a question about one of those products or services, please call the company in question directly.

Documentation Team: Signe Haugen, Geeta Karmarkar, Steve Klitzing, Susan Koehler, Mary
Kraemer, Dawn Maneval, Tom Noronha, Eileen Wollam

Copyright © 1981-1995 by Informix Software, Inc. All rights reserved.

No part of this work covered by the copyright hereon may be reproduced or used in any form or by any
means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems—without permission of the publisher.

RESTRICTED RIGHTS LEGEND

Software and accompanying materials acquired with United States Federal Government funds or intended for
use within or for any United States federal agency are provided with “Restricted Rights” as defined in DFARS
252.227-7013(c)(1)(ii) or FAR 52.227-19.
nhancements

Preface
The Guide to Version 7.1 Feature Enhancements supplements various books in
the Informix Version 7.1UC1 manual set. It describes how to use the enhance-
ments in the Informix Version 7.1UD1 product set, using both
INFORMIX-OnLine Dynamic Server and INFORMIX-SE.

This guide assumes that you have database management experience and are
familiar with relational database concepts. It also assumes that you have
knowledge of Structured Query Language (SQL). The Informix implemen-
tation of SQL is described in detail in a set of Version 7.1 manuals called the
Informix Guide to SQL: Tutorial, the Informix Guide to SQL: Reference, and the
Informix Guide to SQL: Syntax.

You must have the following Informix software:

■ Version 7.1UD1 INFORMIX-OnLine Dynamic Server or INFORMIX-SE

The software must be installed on your computer or on another com-
puter to which your computer is connected over a network.

■ An SQL application programming interface (API) such as
INFORMIX-ESQL/C or INFORMIX-ESQL/COBOL, or the DB-Access
utility that is shipped as part of your OnLine or SE database server.

ESQL/C and ESQL/COBOL let you compose queries, send them to the
database server, and view the results that the OnLine or SE database
server returns. You also can use DB-Access to try out most of the new
SQL statements and branches described in this guide.
Preface iii

Summary of Chapters
Summary of Chapters
The Guide to Version 7.1 Feature Enhancements includes the following chapters:

■ This Preface provides general information about the guide.

■ The Introduction tells how this guide fits into the Informix family of
products and books, explains how to use this guide, introduces the
demonstration database from which the product examples are
drawn, and lists the enhanced features for Version 7.1 of Informix
database server products.

■ Chapter 1, “OnLine Enhancements,” describes how to effectively
configure the OnLine using the enhanced set of configuration param-
eters. This chapter also describes five configuration parameters that
OnLine now configures dynamically rather than statically.

■ Chapter 2, “Connectivity Enhancements,” describes changes to
client/server connectivity that include enhancements to the sqlhosts
file and a new stream-pipe connection type.

■ Chapter 3, “SQL Enhancements,” describes and illustrates changes
to SQL statement syntax that support several new features including
object modes and violation detection, fragment authorization, and
parallel loads. Also described are changes to SQL that support com-
pliance with the XPG4 standard and that ease the gathering of data-
base statistics.

■ Chapter 4, “ON-Archive Feature Enhancements,” describes four
new qualifiers that you can use with ON-Archive commands. It also
explains how to execute a specific request with onautovop, auto-
matic execution of oncatlgr, and improved user notification for
events like logs-full, archive, backup, and restore. This chapter also
contains the complete syntax for these enhancements.

■ Chapter 5, “SQL API Enhancements,” describes changes to the ESQL
preprocessor and a new function that returns the names of databases
managed by a given database server.

■ Chapter 6, “DB-Access Enhancements,” describes additions and
changes to the DB-Access menus and screens to support the new
USER clause of the CONNECT statement.
iv Guide to 7.1 Feature Enhancements

Informix Welcomes Your Comments
■ “Error Messages” contains a list of the error messages and corrective
actions that might appear when you work with Version 7.1UD1
products.

■ The Index includes references throughout the Guide to Version 7.1 Fea-
ture Enhancements.

Informix Welcomes Your Comments
To help us improve future versions of this guide, please send us your
comments, corrections, and suggestions. You can contact us in the following
ways:

■ Send a FAX to the Informix Technical Publications Department at
(415) 926-6571.

■ Send electronic mail to doc@informix.com.

We appreciate your feedback.

Related Reading
If you want additional technical information on database management,
consult the following texts by C. J. Date:

■ An Introduction to Database Systems, Volume I (Addison-Wesley
Publishing, 1990)

■ An Introduction to Database Systems, Volume II (Addison-Wesley
Publishing, 1983)

This guide assumes that you are familiar with your computer operating
system. If you have limited UNIX system experience, you might want to look
at your operating-system manual or a good introductory text before you read
this guide.
Preface v

Related Reading
Some suggested texts about UNIX systems follow:

■ A Practical Guide to the UNIX System, Second Edition,
by M. Sobell (Benjamin/Cummings Publishing, 1989)

■ A Practical Guide to UNIX System V by M. Sobell
(Benjamin/Cummings Publishing, 1985)
vi Guide to 7.1 Feature Enhancements

Table of Contents

Table of
Contents
Introduction
Informix Products Covered in this Guide 3
Other Useful Documentation 4
How to Use This Guide 5

Typographical Conventions 5
Syntax Conventions 6
Icons in the Text 10
Example Code Conventions 11
Command-Line Conventions 11

Useful On-Line Files 14
ASCII and PostScript Error Message Files 15
The Demonstration Database 15

Creating the Demonstration Database 17
Compliance with Industry Standards 18
New Features in Informix Version 7.1UD1 Products 19

Changes to INFORMIX-OnLine Dynamic Server 19
Changes to Connectivity 20
Changes to SQL 20
Changes to SQL APIs 21
Changes to DB-Access 22
Other Changes 22

Chapter 1 OnLine Enhancements
Dynamic Allocation of Resources 1-3

Changes to the Default Values of Dependent
Parameters 1-4

Changes in OnLine Architecture Associated with
Dynamic Allocation of Resources 1-7

Error Messages Associated with Dynamic Allocation
of Resources 1-7

viii Guid
Controlling How OnLine Reacts to I/O Errors 1-10
What Are Disabling I/O Errors? 1-10
What Causes Disabling I/O Errors? 1-11
New Alternatives for Dealing with Disabling

I/O Errors 1-11
Monitoring OnLine for Disabling I/O Errors 1-14

Preserving Log Space for Administrative Tasks 1-16
Enabling the Logs-Full High-Water Mark 1-17
Monitoring the Logical Log for Fullness Using

the Message Log 1-17
Monitoring the Logical Log for Fullness Using onstat 1-18
Cases Where You Must Still Use Emergency

Log Backup 1-18
Auditing Configuration Parameters 1-20
OPCACHEMAX Configuration Parameter 1-21
OnLine Algorithm for Determining

DS_TOTAL_MEMORY 1-21
Derive a Minimum for Decision-Support Memory 1-22
Derive a Working Value for Decision-Support

Memory. 1-22
Check Derived Value for Decision-Support Memory 1-23

New Default for OPTCOMPIND 1-24
Enhancements to the onstat Utility 1-24

onstat -O option 1-24
Improved Diagnostic Information 1-26
Changes to onstat -u Output 1-27
Change to onstat -x Output 1-28

Parallel Inserts 1-29
Explicit Inserts Using SELECT...INTO TEMP 1-29
Implicit Inserts Using INSERT INTO...SELECT 1-30

Enhancements to Existing SMI Tables 1-30
syssessions 1-31
syssesprof 1-31
sysptprof 1-31
sysprofile 1-31

Chapter 2 Connectivity Enhancements
Stream Pipes . 2-3

Description of Stream Pipes 2-3
The sqlhosts Entries for Stream Pipes 2-4
Advantages and Disadvantages of Stream Pipes 2-5
e to 7.1 Feature Enhancements

Enhancements to the sqlhosts File 2-5
The servername Field. 2-6
The nettype Field 2-6
The hostname Field 2-6
The servicename Field 2-11
The options Field 2-12

The /INFORMIXTMP Directory 2-16
Size Option for the INFORMIX-SE sqlexecd Log File 2-16

The -l Option 2-17
The -f Option 2-17

Chapter 3 SQL Enhancements
How to Use This Chapter 3-3

Scope of Descriptions 3-3
Relationship of This Chapter to SQL Manuals 3-4
Organization of This Chapter 3-4

New and Changed SQL Statements 3-6
ALTER TABLE 3-7
CONNECT 3-16
CREATE INDEX 3-17
CREATE PROCEDURE 3-24
CREATE ROLE 3-26
CREATE TABLE 3-28
CREATE TRIGGER 3-33
DATABASE 3-37
DROP ROLE 3-38
DROP TABLE 3-39
GET DIAGNOSTICS 3-41
GRANT . 3-42
GRANT FRAGMENT 3-48
RENAME DATABASE 3-57
REVOKE . 3-58
REVOKE FRAGMENT 3-70
SELECT . 3-75
SET . 3-77
SET ROLE 3-105
SET SESSION AUTHORIZATION 3-107
START VIOLATIONS TABLE 3-109
STOP VIOLATIONS TABLE 3-128
UPDATE STATISTICS 3-130

Changed SQL Segments 3-134
Aggregate Expression 3-135
Identifier Segment 3-139
Table of Contents ix

x Guide
New and Changed System Catalog Tables 3-141
SYSCOLDEPEND 3-142
SYSCONSTRAINTS 3-143
SYSFRAGAUTH 3-144
SYSOBJSTATE 3-146
SYSROLEAUTH 3-147
SYSUSERS 3-148
SYSVIOLATIONS 3-149

New and Changed Environment Variables 3-150
INFORMIXOPCACHE 3-151
INFORMIXSQLHOSTS. 3-152
NODEFDAC 3-153
OPTCOMPIND 3-154
PSORT_NPROCS. 3-155

Changed Utilities 3-157
The dbexport Utility. 3-158
The dbload Utility 3-159
The dbschema Utility 3-161

Changes to the SQL Communications Area 3-174
SQLWARN Array 3-175

Chapter 4 ON-Archive Feature Enhancements
Understanding ON-Archive Enhancements and Changes 4-3

Features Added to ON-Archive 4-3
Change to PRIVILEGE Parameter 4-4

Using New ON-Archive Qualifiers 4-4
Using the IMMEDIATE Qualifier 4-4
Using the NOIMMEDIATE Qualifier 4-5
Using the AUTOVOP Qualifier 4-6
Using the NOAUTOVOP Qualifier 4-7

Using Command Qualifiers with Each Other 4-7
New ON-Archive Command 4-8
Using Enhanced ON-Archive Utilities 4-8

Utility Enhancement for onautovop 4-9
Utility Enhancements That Automatically

Start oncatlgr 4-9
Interrupt Enhancement to the ondatartr Utility 4-10

Automating Backups Using an Event Alarm Script 4-10
Understanding the Sample Script 4-11

Adding an ON-Archive Activity Log to Log
Archive Events 4-12

Using the ON-Archive Activity Log 4-13
Change to the PRIVILEGE Configuration Parameter 4-15
ARCHIVE and BACKUP Qualifiers 4-15
to 7.1 Feature Enhancements

ON-Archive Syntax Enhancements 4-21
The COPY/VSET and COPY/VSET/REQUEST

Commands 4-21
The LIST/RECOVERY Command 4-26
The MODIFY/COMMAND Command 4-29
RETRIEVE/DBSPACESET Command 4-32
The RETRIEVE/LOGFILE Command 4-36

Chapter 5 SQL API Enhancements
Flagging Informix Extensions 5-3
Identifying New SQL Statements 5-4
New Warning Values 5-5
New ESQL/C Function 5-6

sqgetdbs(). 5-7

Chapter 6 DB-Access Enhancements
USER Clause of CONNECT Statement 6-3
The CONNECTION Menu 6-4
The SQL Menu 6-5
Interactive Non-Menu and Background Modes 6-6

Connecting in Interactive Non-Menu Mode 6-6
Connecting with a File or Shell File in

Background Mode 6-7

Error Messages

Index
Table of Contents xi

Introduction

Introduction
Informix Products Covered in this Guide 3

Other Useful Documentation 4

How to Use This Guide 5
Typographical Conventions 5
Syntax Conventions 6
Icons in the Text 10
Example Code Conventions 11
Command-Line Conventions 11

Useful On-Line Files 14

ASCII and PostScript Error Message Files 15

The Demonstration Database 15
Creating the Demonstration Database 17

Compliance with Industry Standards 18

New Features in Informix Version 7.1UD1 Products 19
Changes to INFORMIX-OnLine Dynamic Server 19
Changes to Connectivity 20
Changes to SQL 20
Changes to SQL APIs. 21
Changes to DB-Access 22
Other Changes 22

2 Guide
to 7.1 Feature Enhancements

The enhancements contained in this release of Informix software
enable you to perform the following tasks:

■ Reserve logical log space for administrative tasks

■ Control how OnLine reacts to administrative tasks

■ Load and unload data in parallel

■ Enable or disable triggers, indexes, and constraints

■ Detect and analyze constraint violations

■ Control access to data using roles

■ Automatically audit transactions

For a complete listing of the new features in this release, see “New Features
in Informix Version 7.1UD1 Products” on page 18 of this Introduction.

Informix Products Covered in this Guide
Informix produces a number of application development tools and appli-
cation programming interfaces (APIs) that use Structured Query Language
(SQL). Application development tools currently available include
INFORMIX-NewEra and INFORMIX-4GL. SQL APIs include INFORMIX-ESQL/C
and INFORMIX-ESQL/COBOL.

The information presented in this guide is valid for the following products
and versions:

■ INFORMIX-OnLine Dynamic Server, Version 7.1UD1, and its utilities,
such as DB-Access

■ INFORMIX-ESQL/C, Version 7.1UD1

■ INFORMIX-ESQL/COBOL, Version 7.1UD1

■ INFORMIX-SE, Version 7.1UD1
Introduction 3

Other Useful Documentation
Other Useful Documentation
You might want to refer to a number of related Informix documents that the
Guide to 7.1 Feature Enhancements supplements:

■ Depending on the database server that you are using, you or your
system administrator need either the INFORMIX-OnLine Dynamic
Server Administrator’s Guide and the INFORMIX-OnLine Dynamic
Server Archive and Backup Guide or the INFORMIX-SE Administrator’s
Guide.

■ The DB-Access User Manual describes the menus and screens for this
database server utility, which lets you create databases and tables
and issue SQL statements.

■ The Informix Error Messages manual lists error messages and correc-
tions for Version 7.1 and earlier. If you prefer, you can look up the
error messages in the on-line message file described in that manual.
Error messages new to this release are listed in the OnLine Error
Messages section at the end of this supplement.

■ The Informix Guide to SQL: Tutorial leads you through basic database
design and implementation concepts. If you have never used SQL or
an Informix SQL API before, you might want to read it.

■ The Informix Guide to SQL: Reference provides full information on the
structure and contents of the demonstration database that is
provided with all Informix application development tools. It
includes details of the Informix system catalog, describes Informix
and common UNIX environment variables that should be set, and
defines column data types supported by Informix products. It also
contains a glossary of terms.

■ The Informix Guide to SQL: Syntax, provides a detailed description of
all of the SQL statements supported by Informix Version 7.1 and
earlier products.

■ You might also want to refer to the manual for your SQL API, such as
the INFORMIX-ESQL/C Programmer’s Manual or the
INFORMIX-ESQL/COBOL Programmer’s Manual.
4 Guide to 7.1 Feature Enhancements

How to Use This Guide
■ The INFORMIX-OnLine Dynamic Server Migration Guide discusses
how to convert to or from Version 7.1 of OnLine.

■ In addition to the Guide to 7.1 Feature Enhancements, you, or whoever
installs your Informix products, should refer to the Version 7.1 UNIX
Products Installation Guide, Rev. B, to ensure that your Informix
product is properly set up before you begin to work with it. The
Installation Guide contains a complete list of the Documentation
Notes files for the 7.1 release. A matrix depicting possible
client/server configurations is also included in the Installation Guide.

Throughout this guide, references to Informix manuals are to Version 7.1
unless otherwise noted.

How to Use This Guide
This guide assumes that you are using the INFORMIX-OnLine Dynamic
Server. The following sections describe the conventions used in this guide for
typographical and command-line formats, SQL statement syntax, and
examples of code.

Typographical Conventions
Informix product manuals use a standard set of conventions to introduce
new terms, illustrate screen displays, describe command syntax, and so forth.
The following typographical conventions are used throughout this guide:

italics New terms, emphasized words, and variables are printed in
italics.

boldface Database names, table names, column names, filenames,
utilities, and other similar terms are printed in boldface.

computer Information that the product displays and information that
you enter are printed in a computer typeface.

KEYWORD All keywords appear in uppercase letters.
✦ The diamond symbol appears at the beginning and the end of

product-specific information.
Introduction 5

Syntax Conventions
Additionally, when you are instructed to “enter” or “execute” text, immedi-
ately press RETURN after the entry. When you are instructed to “type” the text
or “press” a key, no RETURN is required.

Syntax Conventions
Syntax diagrams describe the format of SQL statements or commands,
including alternative forms of a statement, required and optional parts of the
statement, and so forth. Syntax diagrams have their own conventions, which
are defined in detail and illustrated in this section. SQL statements for
Version 7.1 and earlier are listed in their entirety in Chapter 1 of the Informix
Guide to SQL: Syntax. New SQL statements appear in Chapter 3, “SQL
Enhancements,” in this guide.

Each syntax diagram displays the sequences of required and optional
elements that are valid in a statement or command. Briefly:

■ All keywords are shown in uppercase letters for ease of identifi-
cation, though you need not enter them that way.

■ Words for which you must supply values are in italics.

Each diagram begins at the upper left with a keyword and ends at the upper
right with a vertical line. Between these points, you can trace any path that
does not stop or back up. Each path describes a valid form of the statement.
Except for separators in loops, which the path approaches counterclockwise
from the right, the path always approaches elements from the left and
continues to the right.

This symbol indicates a warning. Warnings provide critical
information that, if ignored, could cause harm to your
database.

This symbol indicates important information that you should
consider when working with the product.

This symbol indicates a tip. It alerts you to useful information
that, for instance, might indicate a shortcut or make it easier to
navigate in the product or manual.
6 Guide to 7.1 Feature Enhancements

Syntax Conventions
Along a path, you might encounter the following elements:

KEYWORD You must spell a word in uppercase letters exactly as
shown; however, you can use either uppercase or
lowercase letters when you enter it.

(.,;+*-/) Punctuation and mathematical notations are literal
symbols that you must enter exactly as shown.

' ' Single quotes are literal symbols that you must enter
as shown.

variable A word in italics represents a value that you must
supply. The nature of the value is explained immedi-
ately following the diagram unless the variable
appears in a box. In that case, the page number of the
detailed explanation follows the variable name.
A reference in a box represents a subdiagram on the
same page (if no page number is supplied) or on a
specified page. Imagine that the subdiagram is spliced
into the main diagram at this point.
A reference to SQLS in this guide represents an SQL
statement or segment described in Chapter 1 of the
Informix Guide to SQL: Syntax. Imagine that the
statement or segment is spliced into the main diagram
at this point.
A code in an icon is a signal warning you that this path
is valid only for some products or under certain condi-
tions. The codes indicate the products or conditions
that support the path. The following codes are used:

This path is valid only for INFORMIX-OnLine
Dynamic Server.
This path is valid only for INFORMIX-SE.
This path is valid only for DB-Access.
This path is valid for INFORMIX-ESQL/C and
INFORMIX-ESQL/COBOL.
‘This path is valid only for
INFORMIX-ESQL/C.
This path is valid only for
INFORMIX-ESQL/COBOL.
This path is valid only if you are using
Informix Stored Procedure Language (SPL).

ADD Clause
p. 5-28

Relational
Operator

see SQLS

ESQL

OL

SE

D/B

ESQL

E/C

E/CO

SPL
Introduction 7

Syntax Conventions
This path is valid only if you have created
your database as a Native Language Support
(NLS) database.
This path is valid only for
INFORMIX-OnLine/Optical.
This path is an Informix extension to ANSI
SQL-92 entry level standard SQL. If you initiate
Informix extension checking and include this
syntax branch, you receive a warning. If you
have set the DBANSIWARN environment
variable at compile time, or have used the
-ansi compile flag, you receive warnings at
compile time. If you have DBANSIWARN set at
run time, or if you compiled with the -ansi
flag, warning flags are set in the sqlwarn
structure.

A shaded option is the default. Even if you do not
explicitly type the option, it will be in effect unless you
choose another option.
Syntax enclosed in a pair of arrows indicates that this
is a subdiagram.
The vertical line is a terminator and indicates that the
statement is complete.
A branch below the main line indicates an option

A loop indicates a path that can be repeated. Punctu-
ation along the top of the loop indicates the separator
symbol for list items.

STARNLS

STAROP

++

ALL

NOT

IN

variable

,

8 Guide to 7.1 Feature Enhancements

Syntax Conventions
Figure 1 shows the elements of a syntax diagram for the CREATE DATABASE
statement. Many syntax diagram conventions are illustrated.

To construct a statement using Figure 1, start at the top left with the
keywords CREATE DATABASE. Then follow the diagram to the right,
proceeding through the options that you want. Figure 1 conveys the
following information:

1. You must type the words CREATE DATABASE.

2. You must supply a database name.

3. You can stop, taking the direct route to the terminator, or you can
take one or more of the optional paths.

Figure 1
Elements of a syntax diagram

OL Log Clause

CREATE DATABASE database name

IN dbspace

LOG IN 'pathname'

MODE ANSI

BUFFERED

LOG

LOG MODE ANSI

OL Log Clause

WITH

WITH

Keywords Variables

Reference Boxes
Terminator

Subdiagrams

SE Log Clause

Signals

OL

SE SE Log Clause

OL

Punctuation
Introduction 9

Icons in the Text
4. If desired, you can designate a dbspace by typing the word IN and a
dbspace name.

5. If desired, you can specify logging. Here, you are constrained by the
database server with which you are working.

❑ If you are using INFORMIX-OnLine Dynamic Server, go to the
subdiagram named OL Log Clause. Follow the subdiagram by
typing the keyword WITH, then choosing and typing either LOG,
BUFFERED LOG, or LOG MODE ANSI. Then, follow the arrow
back to the main diagram.

❑ If you are using INFORMIX-SE, go to the subdiagram named SE
Log Clause. Follow the subdiagram by typing the keywords
WITH LOG IN, typing a quote, supplying a pathname, and
closing the quotes. You can then choose the MODE ANSI option
below the line or continue to follow the line across.

6. Once you are back at the main diagram, you come to the terminator.
Your CREATE DATABASE statement is complete.

Icons in the Text
In the statement descriptions in this guide, icons that appear in the left
margin indicate that the text located between the diamond symbols (✦) is
valid only for a specific product or products, or under certain conditions. In
addition to the icons described on page 7 of this Introduction, the following
icons can appear in the left margin. These icons indicate material that is
relevant under specific conditions:

This icon indicates that the functionality described in the text
that is located between the diamond symbols (✦) is valid only
if your database is ANSI-compliant.
This icon indicates that the functionality described in the text
that is located between the diamond symbols (✦) conforms to
X/Open specifications for dynamic SQL. This functionality is
available when you compile your SQL API with the -xopen
flag.

E/CANSI

E/CX/O
10 Guide to 7.1 Feature Enhancements

Example Code Conventions
Example Code Conventions
Examples of SQL code occur throughout this guide. Except where noted, the
code is not specific to any single Informix application development tool. If
only SQL statements are listed in the example, they are not delineated by
semicolons. To use this SQL code for a specific product, you must apply the
syntax rules for that product. For example, if you are using the Query-
language option of DB-Access, you must delineate multiple statements with
semicolons. If you are using an SQL API, you must use EXEC SQL and a
semicolon (or other appropriate delimiters) at the start and end of each
statement, respectively.

For instance, you might see the following example code:

CONNECT TO stores7
.
.
.
DELETE FROM customer

WHERE customer_num = 121
.
.
.
COMMIT WORK
DISCONNECT CURRENT

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.

Also note that dots in the example indicate that more code would be added
in a full application, but it is not necessary to show it to describe the concept
being discussed.

Command-Line Conventions
Command-line options are commands that you enter at the operating system
prompt to perform certain Informix functions or go to specified menus in
DB-Access. Valid command-line options for DB-Access are illustrated in a
diagram in Chapter 1 of the DB-Access User Manual.

This section defines and illustrates the format of the commands available in
DB-Access and other Informix products. These commands have their own
conventions, which might include alternative forms of a command, required
and optional parts of the command, and so forth.
Introduction 11

Command-Line Conventions
Each diagram displays the sequences of required and optional elements that
are valid in a command. A diagram begins at the upper left with a command.
It ends at the upper right with a vertical line. Between these points, you can
trace any path that does not stop or back up. Each path describes a valid form
of the command. You must supply a value for words that are in italics.

Along a command-line path, you might encounter the following elements:

command This required element is usually the product name
or other short word used to invoke the product or
call the compiler or preprocessor script for a
compiled Informix product. It might appear alone
or precede one or more options. You must spell a
command exactly as shown and must use lowercase
letters.

variable A word in italics represents a value that you must
supply, such as a database, file, or program name.
The nature of the value is explained immediately
following the diagram.

-flag A flag is usually an abbreviation for a function,
menu, or option name or for a compiler or prepro-
cessor argument. You must enter a flag exactly as
shown, including the preceding hyphen.

.ext A filename extension, such as .sql or .cob, might
follow a variable representing a filename. Type this
extension exactly as shown, immediately after the
name of the file and a period. The extension might
be optional in certain products.

(.,;+*-/) Punctuation and mathematical notations are literal
symbols that you must enter exactly as shown.

' ' Single quotes are literal symbols that you must enter
as shown.
A reference in a box represents a subdiagram on the
same page or another page. Imagine that the subdi-
agram is spliced into the main diagram at this point.
A shaded option is the default. Even if you do not
explicitly type the option, it will be in effect unless
you choose another option.

Privileges
 p. 1-17

ALL
12 Guide to 7.1 Feature Enhancements

Command-Line Conventions
Figure 2 shows the elements of a DB-Access command used to echo file input
to the screen.

To construct a similar command, start at the top left with the command
dbaccess. Then follow the diagram to the right, including the elements that
you want. This diagram conveys the following information:

1. You must type the word dbaccess.

2. You can echo the SQL statements in a command file to the screen by
typing the flag -e before the database name.

3. You must supply a database name or use a hyphen (-) to indicate
that a database name is specified in the command file that you want
to run.

4. You must specify the filename of a command file whose SQL state-
ments you want to echo to the screen.

A branch below the main line indicates an optional
path.

The vertical line is a terminator and indicates that
the statement is complete.
Commands enclosed in a pair of arrows indicate
that this is a subdiagram.
A gate () in an option indicates that you can only
use that option once, even though it is within a
larger loop.

-

-s

-t1

1

1

Figure 2
Elements of a command-line diagram

-

databasedbaccess filename-e
Introduction 13

Useful On-Line Files
On some command-line diagrams, you can take the direct route to the
terminator, or you can take an optional path indicated by a branch below the
main line.

Once you are back at the main diagram, you come to the terminator. Your
dbaccess command is complete. Press RETURN to execute the command.

Useful On-Line Files
The following on-line files, which are located in the $INFORMIXDIR/release
directory, might supplement the information in this guide and its accompa-
nying documents:

Documentation
Notes

describe features that are not covered in the Guide to 7.1
Feature Enhancements or UNIX Products Installation Guide,
or that have been modified since publication. The files
that contain the Documentation Notes for these
documents are SUPPDOC_7.1 and INSTALLDOC_7.1. A
complete list of the Documentation Notes files for the
7.1 release appears in the UNIX Products Installation
Guide, Rev. B.

Release Notes describe feature differences from earlier versions of
Informix products and how these differences might
affect current products. The file that contains the
Release Notes for Version 7.1 of Informix database
server products is called SERVERS_7.1.

Machine Notes describe any special actions that are required to
configure and use Informix products on your computer.
Machine Notes are named for the product described.
The Machine Notes file for INFORMIX-OnLine Dynamic
Server is ONLINE_7.1.
The Machine Notes file for INFORMIX-SE is SE_7.1.

The Machine Notes file for INFORMIX-ESQL/C is
ESQLC_7.1.
The Machine Notes file for INFORMIX-ESQL/COBOL is
ESQLCOB_7.1.
14 Guide to 7.1 Feature Enhancements

ASCII and PostScript Error Message Files
Please examine these files because they contain vital information about appli-
cation and performance issues.

A number of Informix products also provide on-line Help files that walk you
through each menu option. To invoke the Help feature, simply press CTRL-W
wherever you are in your Informix product.

ASCII and PostScript Error Message Files
Informix software products provide ASCII files that contain all the Informix
error messages and their corrective actions. To access the error messages in
the ASCII file, Informix provides scripts that let you display error messages
on the screen (finderr) or print formatted error messages (rofferr). See the
Introduction to the Informix Error Messages manual for a detailed description
of these scripts.

The optional Informix Messages and Corrections product provides
PostScript files that contain the error messages and their corrective actions. If
you have installed this product, you can print the PostScript files on a
PostScript printer. The PostScript error messages are distributed in a number
of files of the format errmsg1.ps, errmsg2.ps, and so on. These files are
located in the $INFORMIXDIR/msg directory.

Error messages for the 7.1 feature enhancements described in this guide are
included at the end of this guide.

The Demonstration Database
The DB-Access utility, which is provided with your Version 7.1 Informix
database server products, includes a demonstration database called stores7
that contains information about a fictitious wholesale sporting-goods
distributor. The sample command files that make up a demonstration appli-
cation are also included.

Most of the examples in this guide are based on the stores7 demonstration
database. The stores7 database is described in detail and its contents are
listed in Appendix A of the Informix Guide to SQL: Reference.
Introduction 15

The Demonstration Database
The script that you use to install the demonstration database is called
dbaccessdemo7 and is located in the $INFORMIXDIR/bin directory. The
database name that you supply is the name given to the demonstration
database. If you do not supply a database name, the name defaults to stores7.
Follow these rules for naming your database:

■ Names for databases can be up to 18 characters long for OnLine
databases and up to 10 characters long for SE databases.

■ The first character of a name must be a letter.

■ You can use letters, characters, and underscores (_) for the rest of the
name.

■ DB-Access makes no distinction between uppercase and lowercase
letters.

■ The database name should be unique.

When you run dbaccessdemo7, you are, as the creator of the database, the
owner and database administrator (DBA) of that database.

If you installed your Informix database server product according to the
installation instructions, the files that make up the demonstration database
are protected so you cannot make any changes to the original database.

You can run the dbaccessdemo7 script again whenever you want to work
with a clean demonstration database. The script prompts you when the
creation of the database is complete and asks if you would like to copy the
sample command files to the current directory. Enter N if you have made
changes to the sample files and do not want them replaced with the original
versions. Enter Y if you want to copy over the sample command files.
16 Guide to 7.1 Feature Enhancements

Creating the Demonstration Database
Creating the Demonstration Database
Use the following steps to create and populate the demonstration database:

1. Set the INFORMIXDIR environment variable so that it contains the
name of the directory in which your Informix products are installed.
Set INFORMIXSERVER to the name of the default database server.
The name of the default database server must exist in the
$INFORMIXDIR/etc/sqlhosts file. (For a full description of
environment variables, see Chapter 4 of the Informix Guide to SQL:
Reference.)

2. Create a new directory for the SQL command files. Create the direc-
tory by entering the following command:
mkdir dirname

3. Make the new directory the current directory by entering the follow-
ing command:
cd dirname

4. Create the demonstration database and copy over the sample com-
mand files by entering one of the following commands:

To create the database without logging enter:
dbaccessdemo7 dbname

To create the demonstration database with logging enter:
dbaccessdemo7 -log dbname

If you are using OnLine, by default the data for the demonstration
database is stored in the root dbspace. If you wish, you can specify a
dbspace for the demonstration database.

To create a demonstration database in a particular dbspace enter the
following command:
dbaccessdemo7 dbname -dbspace dbspacename

You can specify all the options in one command as shown in the
following command:
dbaccessdemo7 -log dbname -dbspace dbspacename

If you are using SE, a subdirectory called dbname.dbs is created in
your current directory and the database files associated with stores7
are placed there. You will see both data (.dat) and index (.idx) files in
the dbname.dbs directory. (If you specify a dbspace name, it will be
ignored.)
Introduction 17

Compliance with Industry Standards
To use the database and the command files that have been copied to
your directory, you must have UNIX read and execute permissions
for each directory in the pathname of the directory from which you
ran the dbaccessdemo7 script. Check with your system adminis-
trator for more information about operating-system file and
directory permissions. UNIX permissions are discussed in the
INFORMIX-OnLine Dynamic Server Administrator’s Guide and the
INFORMIX-SE Administrator’s Guide.

5. To give someone else the permissions to access the command files in
your directory, use the UNIX chmod command.

6. To give someone else access to the database that you have created,
grant them the appropriate privileges using the GRANT statement in
DB-Access. To remove privileges, use the REVOKE statement. The
GRANT and REVOKE statements are described in Chapter 1 of the
Informix Guide to SQL: Syntax.

Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.l35-1992), which is identical to
ISO 9075:1992 on INFORMIX-OnLine Dynamic Server. In addition, many
features of OnLine comply with Intermediate and Full Level SQL-92 and with
X/Open SQL CAE (common applications environment) specifications.

Informix SQL-based products are compliant with ANSI SQL-92 Entry Level
(published as ANSI X3.135-1992) on INFORMIX-SE with the following
exceptions:

■ Effective checking of constraints

■ Serializable transactions

In addition, Informix SQL-based products have been enhanced to comply
with the X/Open SQL CAE specifications.
18 Guide to 7.1 Feature Enhancements

New Features in Informix Version 7.1UD1 Products
New Features in Informix Version 7.1UD1 Products
In addition to the following list, a comprehensive listing of all the new
features for this release of Informix products is found in the Release Notes.
The file that contains the Release Notes for Version 7.1UD1 Informix products
is called SERVERS_7.1.

The following section highlights the major new features implemented in this
release of Informix products.

Changes to INFORMIX-OnLine Dynamic Server
The following new OnLine features are supported in a stand-alone or
network environment:

■ Elimination of USERTHREADS, TRANSACTIONS, TBLSPACES,
CHUNKS, and DBSPACES configuration parameters

Beginning with this release, OnLine dynamically allocates the
resources that these configuration parameters once controlled.

■ Introduction of three new configuration parameters: LBU_PRESERVE,
ONDBSPDOWN, and OPTCACHEMAX

■ Ability to process certain types of inserts in parallel

■ Extended command-line syntax for the onstat utility

■ New messages in the OnLine message log

■ New ON-Archive functionality that includes four new qualifiers,
automatic execution of oncatlgr by onautovop and ON-Archive, and
improved user notification of events such as logs full

■ Enhancements to the OnLine secure features

■ New default value for OPTCOMPIND

■ Location of the auditing configuration parameters ADTMODE,
ADTERR, ADTPATH, and ADTSIZE changed from the $ONCONFIG file
to the auditing configuration file, adtcfg

■ Additional columns in four SMI tables
Introduction 19

Changes to Connectivity
See Chapter 1, “OnLine Enhancements,” of this guide for more information
about enhanced configuration parameters. See Chapter 4, “ON-Archive
Feature Enhancements,” for more information about archiving.

Changes to Connectivity
The following connectivity features are new or changed in this release:

■ Stream-pipe connections for local OnLine connections

■ Enhancements to the sqlhosts file

❑ Wildcards and explicit addresses in the hostname and
servicename fields

❑ A fifth field (the options field) used to set additional options

■ The INFORMIXSQLHOSTS environment variable

■ /INFORMIXTMP directory for generated files

■ Limitation of log-file size for SE

See Chapter 2, “Connectivity Enhancements,” for more information about
connectivity.

Changes to SQL
The following SQL features are new or changed in this release:

■ You can specify the object mode of constraints, indexes, and triggers.
You can also create special tables to detect integrity violations.

■ You can create, drop, and enable roles. You can also grant and revoke
privileges to roles.

■ You can grant and revoke privileges on individual fragments of
tables.

■ You can change the user name under which database operations are
performed in the current session.

■ You can rename databases.

■ You can suppress the construction of index information in the
MEDIUM and HIGH modes of the UPDATE STATISTICS statement.
20 Guide to 7.1 Feature Enhancements

Changes to SQL APIs
■ You can use the new aggregate functions RANGE, STDEV, and
VARIANCE.

■ New environment variables have been added, and some existing
environment variables have been modified.

■ New system catalog tables have been added, and some existing
tables have been modified.

■ Some SQL utilities have been modified.

■ The sqlwarn array within the SQL Communications Area (SQLCA)
has been modified.

■ The ANSI flagger used by Informix products has been modified to
eliminate the flagging of certain SQL items as Informix extensions.

■ Some SQL items have been modified to provide enhanced
compliance with the X/Open Portability Guide 4 (XPG4) specification for
SQL.

■ Some SQL statements have been modified to support new function-
ality in this release.

■ The SET CONSTRAINTS statement has been dropped, and its
functionality has been merged into the new SET statement.

See Chapter 3, “SQL Enhancements,” for more information on SQL.

Changes to SQL APIs
■ ESQL/C and ESQL/COBOL can parse and support new SQL syntax

for fragmentation authorization, object modes, and violation
detection.

■ ESQL/COBOL supports fragmentation authorization, object modes,
and violation-detection syntax on both MF2 and RM-85 systems.

■ ESQL/C supports a new function, sqgetdbs(), for obtaining
databases in the current database server.

■ The sqlwarn1 and sqlwarn3 flags in the SQLCA structure can contain
a W after a GRANT or REVOKE statement executes.

See Chapter 5, “SQL API Enhancements,” of this guide for more information.
Introduction 21

Changes to DB-Access
Changes to DB-Access
The DB-Access user interface bundled with OnLine supports the USER clause
of the CONNECT statement.

DB-Access supports the USER clause of the CONNECT statement in two main
ways:

■ Through new screens and menus accessed through the
CONNECTION and SQL menus

■ Through the CONNECT...USER statement syntax entered through the
Query-language menu option

DB-Access includes the following new screens and menus for fragmentation:

■ A new USER NAME screen for entering the name to use in the USER
clause of the CONNECT statement

■ A new PASSWORD screen for entering a user password to use in the
USING clause associated with the USER clause of the CONNECT
statement

See Chapter 6, “DB-Access Enhancements,” for more information.

Other Changes
Version 7.1 of Informix products includes new and modified error messages
and corrections. For more information, see the “Error Messages” section at
the end of this guide.
22 Guide to 7.1 Feature Enhancements

1
Chapter
OnLine Enhancements
Dynamic Allocation of Resources 1-3
Changes to the Default Values of Dependent Parameters 1-4

BUFFERS 1-5
LRUS . 1-5
SHMVIRTSIZE 1-5
NETTYPE 1-6
LOCKS . 1-6
NUMAIOVPS 1-6

Changes in OnLine Architecture Associated with Dynamic
Allocation of Resources 1-7

Error Messages Associated with Dynamic Allocation
of Resources 1-7

Controlling How OnLine Reacts to I/O Errors 1-10
What Are Disabling I/O Errors? 1-10
What Causes Disabling I/O Errors?. 1-11
New Alternatives for Dealing with Disabling I/O Errors 1-11

CONTINUE or 0 1-11
ABORT or 1. 1-12
WAIT or 2 1-12
Using onmode -O to Override ONDBSPDOWN

WAIT Mode 1-13
Monitoring OnLine for Disabling I/O Errors 1-14

Monitoring Disabling I/O Errors Using the Message Log . . . 1-14
Monitoring Disabling I/O Errors Using Event Alarms 1-15

Preserving Log Space for Administrative Tasks 1-16
Enabling the Logs-Full High-Water Mark 1-17
Monitoring the Logical Log for Fullness Using the Message Log . . 1-18
Monitoring the Logical Log for Fullness Using onstat 1-18

1-2 Guid
Cases Where You Must Still Use Emergency Log Backup 1-18
Building the System Monitoring Interface 1-19
Recovery . 1-19
Small Logs, Many Users 1-19
Administrative Activity When Logs Need Backing Up 1-20

Auditing Configuration Parameters 1-20

OPCACHEMAX Configuration Parameter 1-21

OnLine Algorithm for Determining DS_TOTAL_MEMORY 1-21
Derive a Minimum for Decision-Support Memory 1-22
Derive a Working Value for Decision-Support Memory 1-22

When DS_TOTAL_MEMORY Is Set 1-22
When DS_TOTAL_MEMORY Is Not Set 1-23

Check Derived Value for Decision-Support Memory 1-23
Inform User When Derived Value Is Different from

User Value 1-23

New Default for OPTCOMPIND 1-24

Enhancements to the onstat Utility 1-24
onstat -O option. 1-24
Improved Diagnostic Information 1-26
Changes to onstat -u Output 1-27
Change to onstat -x Output 1-28

Parallel Inserts . 1-29
Explicit Inserts Using SELECT...INTO TEMP. 1-29
Implicit Inserts Using INSERT INTO...SELECT 1-30

Enhancements to Existing SMI Tables 1-30
syssessions . 1-31
syssesprof . 1-31
sysptprof . 1-31
sysprofile . 1-32
e to 7.1 Feature Enhancements

This chapter describes the configuration parameters and utility
options that are new or modified in the current release of INFORMIX-OnLine
Dynamic Server. This chapter covers the following topics:

■ Conversion from static to dynamic allocation of resources that were
previously controlled with configuration parameters

■ How to control OnLine reaction to I/O errors using the new config-
uration parameter ONDBSPDOWN and the new -O option of onmode

■ How to preserve space in your logical logs for administrative tasks
using the new configuration parameter LBU_PRESERVE

■ How to specify the size of the memory cache for the
INFORMIX-OnLine/Optical subsystem using the configuration
parameter OPCACHEMAX

■ How to display information about the INFORMIX-OnLine/Optical
memory cache and staging-area blobspace using onstat -O

Dynamic Allocation of Resources
In previous versions of OnLine, to change the value of certain configuration
parameters, you had to bring OnLine to quiescent mode, change the value of
the configuration parameter, and reinitialize shared memory. These configu-
ration parameters are static configuration parameters. The following param-
eters are in this category:

■ USERTHREADS

■ TRANSACTIONS

■ TBLSPACES

■ CHUNKS

■ DBSPACES
OnLine Enhancements 1-3

Changes to the Default Values of Dependent Parameters
Beginning with the current version of OnLine, you can no longer configure
these five parameters. Instead, whenever OnLine reaches the limit for a
resource previously controlled by one of these parameters, it automatically or
dynamically allocates an appropriate quantity of the required resource.
OnLine performs the allocation and sizing of any underlying data structure
in on-line mode, making it unnecessary for you to bring OnLine off-line for
the changes to take effect.

If you wish, you can remove the five configuration parameters from your
configuration file, but OnLine does not require you to take this action. If your
configuration file still contains the old static configuration parameters,
OnLine ignores both the parameters and any value you assign to them.

You do not need to take any action to initiate the dynamic allocation of
resources. The current version of OnLine begins dynamic allocation automat-
ically when you initialize the database server for the first time. You must,
however, check the values of other parameters that depended on the five
eliminated parameters, as explained in the next section.

Changes to the Default Values of Dependent Parameters
Informix changed the default values of the following parameters because of
their dependence on the value of TRANSACTIONS, USERTHREADS, and
CHUNKS:

■ BUFFERS

■ LRUS

■ SHMVIRTSIZE

■ NETTYPE

■ LOCKS

■ NUMAIOVPS

The new parameter defaults are discussed in the sections that follow. In each
section, a description of the current default value is presented first, followed
by a description the old default value.
1-4 Guide to 7.1 Feature Enhancements

Changes to the Default Values of Dependent Parameters
BUFFERS

If you do not specify a value for BUFFERS in the configuration file, BUFFERS
defaults to 1000 buffers. This value results in a 2-megabyte buffer pool when
OnLine page size is 2 kilobytes, and a 4-megabyte buffer pool when OnLine
page size is 4 kilobytes. The minimum number of buffers that you can specify
is 100. This value results in a 200-kilobyte buffer pool when OnLine page size
is 2 kilobytes, and a 400-kilobyte buffer pool when page size is 4 kilobytes.

The previous default value for BUFFERS was 4 * USERTHREADS. This default
is no longer valid because Informix eliminated the USERTHREADS configu-
ration parameter.

LRUS

If you do not specify LRUS in the configuration file, OnLine sets a default
value based on the MULTIPROCESSOR configuration parameter. If you
specify a value for MULTIPROCESSOR, OnLine uses the following formula to
determine a default for LRUS:

LRUS = MAX(4, NUMCPUVPS)

If you do not specify MULTIPROCESSOR in the configuration file, OnLine uses
a default value of 4.

The previous default value for LRUS was MIN(USERTHREADS/2, 8). This
default is no longer valid because Informix eliminated the USERTHREADS
configuration parameter.

SHMVIRTSIZE

If you do not specify a value for SHMVIRTSIZE in your configuration file,
OnLine uses the value of SHMADD as a default. The default for SHMADD is
8 kilobytes (meaning OnLine adds 8-megabyte segments). If you do not
specify SHMVIRTSIZE nor SHMADD, OnLine uses an initial virtual shared-
memory segment of 8 megabytes.

The previous default value for SHMVIRTSIZE was 200 * USERTHREADS. This
default is no longer valid because Informix eliminated the USERTHREADS
configuration parameter.
OnLine Enhancements 1-5

Changes to the Default Values of Dependent Parameters
NETTYPE

The third field of the NETTYPE configuration parameter, which specifies the
maximum number of connections for that net type, defaults to 50. OnLine
administrators who wish to limit or increase the default number of connec-
tions to the database server for a particular NETTYPE must specify the third
field of the NETTYPE.

The previous default value for the third field of NETTYPE was the value of
USERTHREADS. This default is no longer valid because Informix eliminated
the USERTHREADS configuration parameter.

LOCKS

The range of values for LOCKS is 2000 to a maximum of 8,000,000.

In previous versions of OnLine, the range of values for LOCKS was the
greater of 2000 and (100 * SQRT(TRANSACTIONS)) to a maximum of 8,000,000.
This range of values is no longer valid because Informix eliminated the
TRANSACTIONS configuration parameter.

NUMAIOVPS

OnLine calculates a default value of NUMAIOVPS as follows:

Default_NUMAIOVPS = 2 * (number_of_chunks)

For example, suppose that you allocate a total of five chunks, one for the root
dbspace and four more for an additional dbspace. The next time that you
bring up OnLine after you allocate the chunks, OnLine configures 10 AIO
virtual processors.

In previous versions of OnLine, the default value of NUMAIOVPS depended
on the value of the CHUNKS configuration parameter. This default is no
longer valid because Informix eliminated the CHUNKS configuration
parameter.
1-6 Guide to 7.1 Feature Enhancements

Changes in OnLine Architecture Associated with Dynamic Allocation of Resources
Changes in OnLine Architecture Associated with Dynamic
Allocation of Resources
OnLine allocates the resources previously controlled by the five eliminated
parameters in the following way:

■ USERTHREADS and TRANSACTIONS

OnLine allocates the underlying structures in blocks.

■ CHUNKS and DBSPACES

OnLine allocates space for the underlying structures for these items
to allow for the current maximum of 2 kilobytes for CHUNKS and
DBSPACES.

■ TBLSPACES

OnLine increases the number of tblspace structures as necessary.
Informix eliminated the hash lists associated with TBLSPACES.
OnLine organizes tblspace entries internally based on dbspace.
OnLine maintains tblspace entries after it closes a tblspace to allow
tblspace statistics to last for the life of the database server or the
tblspace.

OnLine does not automatically free underlying structures that correspond to
the new dynamically configured parameters. For user thread and transaction
structures, OnLine does not even attempt to coalesce these tables or lists and
free memory until you execute onmode -F.

Because OnLine allocates these structures dynamically, they now reside in
the virtual instead of the resident portion of shared memory.

Error Messages Associated with Dynamic Allocation of
Resources
Informix changed the messages that OnLine sends to the message log when
OnLine cannot allocate a sufficient amount of user threads, transactions, or
tblspaces. The following table presents each of the old messages and the
corresponding new messages. Old messages are messages that OnLine sent
previous to this release; new messages apply to versions beginning with this
release.
OnLine Enhancements 1-7

Error Messages Associated with Dynamic Allocation of Resources
OnLine delivers the new messages in the context of an assertion warning.
Informix replaced some of the old messages with more than one new
message to indicate more exactly the cause of and suggested action for each
of the errors.

OnLine no longer issues some messages related to static tables because it no
longer uses this data structure to manage user threads and transactions.

Parameter
Message
Status Message

USERTHREADS Old User thread table overflow - user id n

New Unable to allocate a user thread for user id n
User thread limit of 32767 reached

New Unable to allocate a user thread for user id n
Memory allocation failure
Retry operation later or make more virtual memory available to OnLine

Obsolete Unable to allocate any recovery worker threads
recvry_typ increase ‘USERTHREADS’

Obsolete Unable to allocate the n requested recovery worker threads for recvry_type

Obsolete Allocating the maximum number of worker threads available m

Old WARNING! Physical Log size current_log_size is too small. Physical Log
overflows may occur during peak activity. Physical Log size should be
increased to recommended_log_size to guard against physical log overflows.

New WARNING! Physical Log size current_log_size is too small. Physical Log
overflows may occur during peak activity. Recommended minimum
Physical Log size is recommended_log_size times maximum concurrent user
threads.

Old WARNING! Logical log layout may cause OnLine to get into a locked state.
To guard against this problem, increase the size of the smallest logical log
from current_log_size to recommended_log_size.

New WARNING! Logical log layout may cause OnLine to get into a locked state.
Recommended smallest logical log size is recommended_log_size times max-
imum concurrent user threads.

 (1 of 2)
1-8 Guide to 7.1 Feature Enhancements

Error Messages Associated with Dynamic Allocation of Resources
Memory is the only factor that limits the maximum number of
concurrently open tblspaces. Previously, Informix arbitrarily set the
limit at 32,000.

New WARNING! Buffer pool size may cause OnLine to get into a locked state.
Recommended minimum buffer pool size is recommended_buffer_size times
maximum concurrent user threads.

TRANSACTIONS Old Transaction table overflow-user id n, session id m

New Unable to allocate a transaction for user id n, session id m
Transaction limit of 32767 reached

New Unable to allocate a transaction for user id n,
session id m
Memory allocation failure
Make more virtual memory available to OnLine

Obsolete Transaction table overflow - user id n, session id m increase
TRANSACTIONS

Obsolete Transaction table overflow due to parallel recovery

Obsolete Delaying until transaction slot available

Obsolete To improve recovery performance, increase TRANSACTIONS

TBLESPACES Old TBLSpace table overflow - user id n, sid m

New Unable to open TBLSpace 0xdddddddd for user id n, session id m
Memory allocation failure
Make more virtual memory available to OnLine

Parameter
Message
Status Message

 (2 of 2)
OnLine Enhancements 1-9

Controlling How OnLine Reacts to I/O Errors
Controlling How OnLine Reacts to I/O Errors
Previous to this version of OnLine, a kicked-out cable or failed controller
meant that OnLine immediately marked the dbspace affected by the cable or
controller as down. With the current version of OnLine, you can prevent
OnLine from marking a dbspace as down while you investigate the problem.

If you find that the problem is trivial, such as a loose cable, you can bring
OnLine off-line and then on-line again without restoring the affected dbspace
from archive. If you find that the problem was legitimate, such as a damaged
disk, you can use onmode -O to mark the affected dbspace as down and
continue processing.

What Are Disabling I/O Errors?
Before OnLine considers an I/O error to be disabling, the error must meet two
criteria. First, the error must occur when OnLine attempts to perform an
operation on a chunk that has at least one of the following characteristics:

■ The chunk has no mirror.

■ The primary or mirror companion of the chunk under question is
off-line.

Second, the error must occur when OnLine attempts, but fails, to perform one
of the following three operations:

■ Seek, read, or write on a chunk

■ Open a chunk

■ Verify that chunk information on the first used page is valid

OnLine does this as a sanity check immediately after opening a
chunk.
1-10 Guide to 7.1 Feature Enhancements

What Causes Disabling I/O Errors?
What Causes Disabling I/O Errors?
Informix divides disabling I/O errors into two general categories, destructive
and nondestructive. A disabling I/O error is destructive when the disk that
contains a database becomes damaged in some way. This type of event
threatens the integrity of data, and OnLine marks the chunk and dbspace as
down. OnLine prohibits access to the damaged disk until you repair or
replace the disk and perform a physical and logical restore.

A disabling I/O error is nondestructive when the error does not threaten the
integrity of your data. Examples of nondestructive errors occur when
someone accidentally kicks out a cable, you somehow erase the symbolic link
that you set up to point to a chunk, or a disk controller becomes damaged.

Prior to this release, OnLine prohibited access to the chunk that generated the
disabling error, even when the cause was nondestructive. As in the case
where disk damage occurs, OnLine required that you correct the problem
and perform a physical and logical restore before you could access data in the
disabled dbspace.

New Alternatives for Dealing with Disabling I/O Errors
With the current release of OnLine, Informix supplies a new configuration
parameter ONDBSPDOWN. You can set ONDBSPDOWN to one of the three
modes explained in the following sections.

CONTINUE or 0

OnLine marks a noncritical dbspace as down and continues whenever a
disabling I/O error associated with the dbspace occurs. This mode causes
OnLine to treat disabling I/O errors as it did in earlier versions. OnLine
handles critical dbspaces as in ABORT mode.

Use CONTINUE mode if the occurrence of nondestructive disabling I/O errors
is infrequent. Note, however, that this mode requires you to restore from
archive if a nondestructive I/O error occurs.
OnLine Enhancements 1-11

New Alternatives for Dealing with Disabling I/O Errors
ABORT or 1

OnLine comes off-line without allowing a checkpoint to occur whenever a
disabling I/O error occurs on any dbspace. Critical dbspaces operate in this
mode only.

Consider using ABORT mode if you have established procedures for dealing
with critical media failures. You can use the same procedures for disabling
I/O errors that affect noncritical media.

WAIT or 2

When a disabling I/O error from a noncritical dbspace occurs, OnLine waits
for the next checkpoint request and then blocks all updating threads. If you
suspect that disabling I/O is nondestructive, WAIT mode allows you time to
investigate the problem that caused the error.

If you find that the cause of the disabling I/O error is nondestructive, take the
following steps:

1. Correct the problem (plug in the cable, replace the failed controller,
or remedy whatever your particular problem happens to be) causing
the disabling I/O error.

2. Bring OnLine down using onmode -k.

3. Bring OnLine back up using oninit.

If you find that the cause of the disabling I/O error is destructive (data
integrity is affected), or that you cannot correct the problem in a suitable time
frame, you can override the WAIT mode with onmode -O. When you
override the WAIT mode, OnLine marks the dbspace as down, completes the
checkpoint, and releases the blocked threads. Processing can continue, but
you must restore the disabled dbspace from archive before OnLine can read
or write to it. See “Using onmode -O to Override ONDBSPDOWN WAIT
Mode” on page 1-13 for onmode -O syntax and associated error messages.

Use WAIT mode if you experience disabling I/O errors that do not affect the
integrity of your data and you have the resources to correct the error in a
relatively short time span.
1-12 Guide to 7.1 Feature Enhancements

New Alternatives for Dealing with Disabling I/O Errors
Using onmode -O to Override ONDBSPDOWN WAIT Mode

The onmode -O option overrides the WAIT mode of the ONDBSPDOWN
configuration parameter. Use this option only in the following circumstances:

■ ONDBSPDOWN is set to WAIT.

■ A disabling I/O error occurs causing OnLine to block all updating
threads.

■ You cannot, or do not, wish to correct the problem that caused the
disabling I/O error.

■ You want OnLine to mark the disabled dbspace as down and
continue processing.

When you execute this option, OnLine marks the dbspace responsible for the
disabling I/O error as down, completes a checkpoint, and releases blocked
threads. Then, onmode prompts you with the following message:

This will render any dbspaces which have incurred disabling I/O errors unusable
and require them to be restored from an archive.
Do you wish to continue?(y/n)

If onmode does not encounter any disabling I/O errors on noncritical
dbspaces when you run the -O option, it notifies you with the following
message:

There have been no disabling I/O errors on any non-critical dbspaces.

Override
ONDBSPDOWN WAIT

Mode

-O
OnLine Enhancements 1-13

Monitoring OnLine for Disabling I/O Errors
Monitoring OnLine for Disabling I/O Errors
OnLine notifies you about disabling I/O errors in two ways: the message log
and event alarms.

Monitoring Disabling I/O Errors Using the Message Log

OnLine sends the following message to the message log when a disabling I/O
error occurs:

Assert Failed: Chunk {chunk-number} is being taken OFFLINE.
Who: Description of user/session/thread running at the time
Result: State of the affected OnLine entity
Action: What action the OnLine administrator should take
See Also: DUMPDIR/af.uniqid containing more diagnostics

The result and corresponding suggested action depend on the current setting
of ONDBSPDOWN, as described in the following table:

For more information on how to interpret messages that OnLine sends to the
message log, see Chapter 41, “OnLine Message Log Messages,” of the
INFORMIX-OnLine Dynamic Server Administrator’s Guide.

Monitoring Disabling I/O Errors Using Event Alarms

When a dbspace incurs a disabling I/O error, OnLine passes the following
values as parameters to your event-alarm executable:

ONDBSPDOWN
 Setting Result Action

CONTINUE dbspace/blobspace
{space-name} is disabled

Restore dbspace/blobspace
{space-name}

ABORT OnLine must abort. Reinitialize shared memory.

WAIT OnLine blocks at next
checkpoint

Shutdown using onmode -k or
override onmode -O
1-14 Guide to 7.1 Feature Enhancements

Monitoring OnLine for Disabling I/O Errors
If you wish OnLine to notify you about disabling I/O errors using event
alarms, you must write a script that OnLine executes when it detects a
disabling I/O error. Chapter 33, “Monitoring OnLine,” of the
INFORMIX-OnLine Dynamic Server Administrator’s Guide explains how to set
up this executable and make OnLine aware of the location of the executable
that you write.

Parameter Value

Severity: 4 (Emergency)

Class: 5

Class message: dbspace is disabled: ‘dbspace-name’

Specific message: Chunk {chunk-number} is being taken OFFLINE.
OnLine Enhancements 1-15

Preserving Log Space for Administrative Tasks
Preserving Log Space for Administrative Tasks
During peak activity on high-volume, on-line transaction processing (OLTP)
systems, OnLine administrators sometimes encounter a deadlock when OLTP
activity fills the logical log faster than ON-Archive can back up the logs to
tape and free them.

Prior to marking a backed-up log as free, OnLine updates the ON-Archive
catalog tables to record the occurrence of the logical-log backup. This update
itself generates logical-log activity, leading to a possible deadlock as the logs
continue to fill. When a deadlock of this type occurs, the OnLine adminis-
trator must use the emergency log backup procedure even though a
continuous logical-log backup is already in progress. Figure 1-1 illustrates
how a deadlock of this type occurs.

The ON-Archive high-water mark feature provides a solution for logical-log
deadlocks of this type. When you enable this feature, OnLine blocks OLTP
activity when the next-to-last log fills, rather than the last log, as it usually
does. In doing so, OnLine preserves the last logical-log file to record logging
generated by administrative activities such as a backup of the logical log.
Figure 1-2 on page 1-17 illustrates how the high-water mark feature prevents
logical-log deadlocks.

Figure 1-1
ON-Archive with high-water mark off

ON-Archive copies
oldest log to tape

Logs approaching full Backup starts Backup fails;
deadlock results

ON-Archive

Archive tape Archive tape

ON-Archive

ON-Archive
writes to log

Log fills
completely
1-16 Guide to 7.1 Feature Enhancements

Enabling the Logs-Full High-Water Mark
For more information on the emergency backup procedure, see Chapter 6,
“Backing Up the Logical Log,” of the INFORMIX-OnLine Dynamic Server
Archive and Backup Guide.

Enabling the Logs-Full High-Water Mark
To enable the logs-full high-water mark, set the LBU_PRESERVE configuration
parameter to 1. When you set LBU_PRESERVE to 1, OnLine blocks DB-Access,
ESQL/C, and all other clients from generating log records in the last logical-
log file when the logs-full condition is reached. The default value of
LBU_PRESERVE is 0, or off.

Whenever you change the value of LBU_PRESERVE, you must reinitialize
shared memory for the change to take effect.

Monitoring the Logical Log for Fullness Using the Message
Log
OnLine continues to send logs-full messages to the message log similar to the
messages it sent in previous versions of OnLine. Whenever a logs full
condition occurs, however, instead of sending the messages when the last log
fills, OnLine sends the messages when the second-to-last log is full.

Figure 1-2
ON-Archive with high-water mark on

Backup starts Backup completes

ON-Archive

Archive tape Archive tape
ON-Archive

ON-Archive writes
to logical log

archive completes
ON-Archive copies
oldest log to tape

Oldest log
archived

High-water mark High-water markHigh-water mark

Logs full
OnLine Enhancements 1-17

Monitoring the Logical Log for Fullness Using onstat
Monitoring the Logical Log for Fullness Using onstat
Whenever you set LBU_PRESERVE to 1 and OnLine is blocking to preserve log
space for administrative tasks, the onstat utility displays the following
message just after its banner line:

Blocked: LBU

For example, suppose that OnLine is running under the following
conditions:

■ You set LBU_PRESERVE to 1.

■ All logs, but the last, are full.

In these circumstances, the first two lines of any of the onstat options appear,
as shown in the follow example:

RSAM Version 7.10.U -- On-Line -- Up 00:12:53 -- 5152 Kbytes
Blocked: LBU

Cases Where You Must Still Use Emergency Log Backup
Although the logs-full high-water mark eliminates the need for emergency
backup in the deadlock scenario described in the preceding sections, four
known scenarios still require OnLine administrators to use emergency log
backup. Each case is examined in detail in the following sections.

Building the System Monitoring Interface

A privileged client is responsible for building the system monitoring
interface (SMI). This client can potentially invade the last log file. If you do not
configure sufficient log space or a sufficient number of log files, the privi-
leged client might not succeed in building SMI without a log backup. This
situation can cause the logical log to fill.
1-18 Guide to 7.1 Feature Enhancements

Cases Where You Must Still Use Emergency Log Backup
Recovery

When you start OnLine after an uncontrolled shutdown, it needs log space to
roll back any transactions that were uncommitted when the shutdown
occurred. The threads that perform the recovery have privileges that allow
them to use the last log file. Because of this privilege, it is possible that the
logical log can become full, but only in the unlikely case that the number and
size of transactions open when the shutdown occurred exceed the size of the
logical log.

Small Logs, Many Users

If you configure your logical log files so that

Logical Log Size < 2 * page_size * number of users

and all users enter transactions of maximum complexity, it is possible that
applications can invade the last log with OLTP activity. Only when you set the
size of the log much smaller than two pages per user can a logs-full condition
occur.
OnLine Enhancements 1-19

Auditing Configuration Parameters
Administrative Activity When Logs Need Backing Up

Certain administrative clients have the privilege to invade the last logical-log
file. The following list gives examples of such administrative clients:

■ onspaces

■ onparams

■ oncheck

■ ontape

■ onmonitor

■ ON-Archive

■ oncatlgr

■ onautovop

■ ondatartr

Because these clients can invade the last logical log, certain circumstances
might require you to perform an emergency log backup. For example, when
the logical log approaches full, and you proceed to do large quantities of
administrative work, you might need to perform an emergency log backup.

Auditing Configuration Parameters
Informix moved the following configuration parameters from onconfig.std
to adtcfg.std:

■ ADTERR

■ ADTMODE

■ ADTPATH

■ ADTSIZE

For more information on adtcfg.std and the configuration parameters it
contains, see the INFORMIX-OnLine Dynamic Server Trusted Facility Manual.
1-20 Guide to 7.1 Feature Enhancements

OPCACHEMAX Configuration Parameter
OPCACHEMAX Configuration Parameter

The OPCACHEMAX configuration parameter specifies the size of the memory
cache for the INFORMIX-OnLine/Optical subsystem. OnLine stores pieces of
blobs in the memory cache before delivering them to the subsystem. Use this
parameter only if you use optical storage with INFORMIX-OnLine/Optical.

OnLine Algorithm for Determining
DS_TOTAL_MEMORY
Beginning with this release, OnLine derives a value for DS_TOTAL_MEMORY
when you do not set DS_TOTAL_MEMORY, or you set it to an inappropriate
value. Whenever OnLine changes the value that you assigned to
DS_TOTAL_MEMORY, it notifies you by sending the following message to
your console:

DS_TOTAL_MEMORY recalculated and changed from old_value Kb
to new_value Kb

The algorithm that OnLine uses to derive the new value for
DS_TOTAL_MEMORY is documented in the following sections. When you
receive the preceding message, you can use the algorithm to investigate what
values OnLine considers inappropriate and take corrective action based on
your investigation.

default value 128
units kilobytes
range of values Positive integers
takes effect When OnLine needs more memory
ON-Monitor Parameters, Initialize, StageBlob
refer to See the INFORMIX-OnLine/Optical User Manual
OnLine Enhancements 1-21

Derive a Minimum for Decision-Support Memory
Derive a Minimum for Decision-Support Memory
In the first part of the algorithm, OnLine establishes a minimum for decision-
support memory. When you assign a value to the configuration parameter
DS_MAX_QUERIES, OnLine sets the minimum amount of decision-support
memory according to the following formula:

min_ds_total_memory = DS_MAX_QUERY * 128Kb

When you do not assign a value to DS_MAX_QUERIES, OnLine instead uses
the following formula based on the value of NUMCPUVPS:

min_ds_total_memory = NUMCPUVPS * 2 * 128Kb

Derive a Working Value for Decision-Support Memory
In the second part of the algorithm, OnLine establishes a working value for
the amount of decision-support memory. OnLine verifies this amount in the
third and final part of the algorithm.

When DS_TOTAL_MEMORY Is Set

OnLine first checks if SHMTOTAL is set. When SHMTOTAL is set, OnLine uses
the following formula to calculate DS_TOTAL_MEMORY:

IF DS_TOTAL_MEMORY <= SHMTOTAL - nondecision_support_memory THEN
decision-support memory = DS_TOTAL_MEMORY

ELSE
decision-support memory = SHMTOTAL - nondecision_support_memory

This algorithm effectively prevents you from setting DS_TOTAL_MEMORY to
values that OnLine cannot possibly allocate to decision-support memory.

When SHMTOTAL is not set, OnLine sets decision-support memory equal to
the value that you specified in DS_TOTAL_MEMORY.
1-22 Guide to 7.1 Feature Enhancements

Check Derived Value for Decision-Support Memory
When DS_TOTAL_MEMORY Is Not Set

When you do not set DS_TOTAL_MEMORY, OnLine proceeds as follows. First,
OnLine checks if you set SHMTOTAL. When SHMTOTAL is set, OnLine uses
the following formula to calculate the amount of decision-support memory:

decision-support memory = SHMTOTAL -
nondecision_support_memory

When OnLine finds that you did not set SHMTOTAL, it sets decision-support
memory as shown in the following example:

decision-support memory = min_ds_total_memory

The variable min_ds_total_memory is described in “Derive a Minimum for
Decision-Support Memory” on page 1-21.

Check Derived Value for Decision-Support Memory
The final part of the algorithm verifies that the amount of shared memory is
greater than min_ds_total_memory and less than the maximum possible
memory space for your computer. When OnLine finds that the derived value
for decision-support memory is less than min_ds_total_memory, it sets
decision-support memory equal to min_ds_total_memory.

When OnLine finds that the derived value for decision-support memory is
greater than the maximum possible memory space for your computer, it sets
decision-support memory equal to the maximum possible memory space.

Inform User When Derived Value Is Different from User Value

When, at any point during the processing of this algorithm, OnLine changes
the value that you set for DS_TOTAL_MEMORY, it sends a message to your
console in the following format:

DS_TOTAL_MEMORY recalculated and changed from old_value Kb
to new_value Kb

The metavariable old_value represents the value that you assigned to
DS_TOTAL_MEMORY in your configuration file. The metavariable new_value
represents the value that OnLine derived.
OnLine Enhancements 1-23

New Default for OPTCOMPIND
New Default for OPTCOMPIND
Informix changed the default value of the configuration parameter
OPTCOMPIND from 0 to 2. A default of 2 forces the optimizer to make its
decisions about optimization based purely on costs without taking into
consideration translation isolation mode. With the new default, OnLine does
not give preference to index scans (nested-loop joins) over table scans (other
join methods). For more information about OPTCOMPIND, see Chapter 38,
“OnLine Configuration Parameters,” of the INFORMIX-OnLine Dynamic
Server Administrator’s Guide.

Enhancements to the onstat Utility
This section addresses three enhancements to the onstat OnLine utilities. The
first enhancement is a new option that helps you monitor optical memory
cache and staging-area blobspaces. The second enhancement is an additional
line in the onstat banner line that displays whenever OnLine is blocking.

The third enhancement improves your ability to monitor the allocation of
user threads and transactions. Because OnLine automatically allocates user
threads and transactions as needed, you no longer need to set the configu-
ration parameters USERTHREADS and TRANSACTIONS. You might want,
however, to monitor the dynamic allocation of user-thread and transaction
resources. As explained in the following sections, changes to the display of
the -u and -x options allow you to monitor these resources.

onstat -O option
Use the -O option of the onstat utility to display information about the
INFORMIX-OnLine/Optical memory cache and staging-area blobspace. You
can interpret output from this option as follows. The totals shown in the
display accumulate from session to session. OnLine resets the totals to 0
only when you execute onstat -z.
1-24 Guide to 7.1 Feature Enhancements

onstat -O option
The first section of the display describes the following system-cache totals
information:

Although the size output indicates the amount of memory that is specified in
the configuration parameter OPCACHEMAX, OnLine does not allocate
memory to OPCACHEMAX until necessary. Therefore, the alloc output
reflects only the number of 1-kilobyte pieces of the largest blob that has been
processed. When the values in the alloc and avail output are equal to each
other, the cache is empty.

The second section of the display describes the following user-cache totals
information:

size is the size specified in the OPCACHEMAX configuration
parameter.

alloc is the number of 1-kilobyte pieces that OnLine allocated to
the cache.

avail describes how much of alloc (in kilobytes) is not used.
number is the number of blobs that OnLine successfully put into

the cache without overflowing.
kbytes is the number of kilobytes of the blobs that OnLine put

into the cache without overflowing.
number is the number of blobs that OnLine wrote to the staging-

area blobspace.
kbytes is the number of kilobytes of the blobs that OnLine wrote

to the staging-area blobspace.

SID is the session id for the user.
use is the userid of the client.
size is the size specified in the INFORMIXOPCACHE

environment variable, if set. If you do not set the
INFORMIXOPCACHE environment variable, OnLine uses
the size that you specify in the configuration parameter
OPCACHEMAX.

number is the number of blobs that OnLine put into cache without
overflowing.
OnLine Enhancements 1-25

Improved Diagnostic Information
Improved Diagnostic Information
Whenever OnLine is blocked, onstat displays the following additional line
after the banner line:

Blocked: reason

The metavariable reason can take one of the following values:

See “Monitoring the Logical Log for Fullness Using onstat” on page 1-18 for
an example of what onstat displays when OnLine is blocked to preserve
logical-log space for administrative tasks.

kbytes is the number of kilobytes of the blobs that OnLine put
into the cache without overflowing.

number is the number of blobs that OnLine wrote to the staging-
area blobspace.

kbytes is the number of kilobytes of the blobs that OnLine wrote
to the staging-area blobspace.

Reason Description

CKPT checkpoint

LONGTX long transaction

ARCHIVE ongoing archive

MEDIA_FAILURE media-failure

HANG_SYSTEM OnLine failure

DBS_DROP dropping a dbspace

DDR discrete data replication

LBU logs full high-water mark
1-26 Guide to 7.1 Feature Enhancements

Changes to onstat -u Output
Changes to onstat -u Output
Informix enhanced the last line of onstat -u output to display the maximum
number of concurrent user threads that were allocated since you initialized
OnLine. For example, the last line of onstat -u output shown in Figure 1-3 is:

4active, 128 total, 17 maximum concurrent

The last part of the line, 17 maximum concurrent, indicates that the maximum
number of user threads that were running concurrently since you initialized
OnLine was 17.

For more information on onstat -u, see Chapter 40, “OnLine Utilities,” of the
INFORMIX-OnLine Dynamic Server Administrator’s Guide.

RSAM Version 7.10.UD1 -- On-Line -- Up 00:50:22 -- 8896 Kbytes

Userthreads
address flags sessid user tty wait tout locks nreads nwrites
80eb8c ---P--D 0 informix - 0 0 0 33 19
80ef18 ---P--F 0 informix - 0 0 0 0 0
80f2a4 ---P--B 3 informix - 0 0 0 0 0
80f630 ---P--D 0 informix - 0 0 0 0 0
4active, 128 total, 17 maximum concurrent

Figure 1-3
onstat -u output
OnLine Enhancements 1-27

Change to onstat -x Output
Change to onstat -x Output
Informix enhanced the last line of onstat -x output to display the maximum
number of concurrent transactions since you initialized OnLine. For
example, the last line of onstat -u output shown in Figure 1-4 is:

11active, 128 total, 6 maximum concurrent

The last part of the line, 6 maximum concurrent, indicates that the maximum
number of transactions that were running concurrently since you initialized
OnLine was 6.

For more information on onstat -x, see Chapter 40, “OnLine Utilities,” in the
INFORMIX-OnLine Dynamic Server Administrator’s Guide.

RSAM Version 7.10.UD1 -- On-Line -- Up 00:50:22 -- 8896 Kbytes

Transactions
address flags userthread locks log begin isolation retrys coordinator
40a7e4 A---- 406464 0 0 COMMIT 0
40a938 A---- 4067c4 0 0 COMMIT 0
40aa8c A---- 406b24 0 0 COMMIT 0
40abe0 A---- 40a124 0 0 COMMIT 0
11 active, 128 total, 6 maximum concurrent

Figure 1-4
onstat -x output
1-28 Guide to 7.1 Feature Enhancements

Parallel Inserts
Parallel Inserts
Beginning with this release, OnLine performs the following types of inserts
in parallel:

■ Explicit inserts using SELECT...INTO TEMP

■ Implicit inserts using INSERT INTO...SELECT

The following sections explain the details and restrictions that concern
parallel inserts.

Explicit Inserts Using SELECT...INTO TEMP
OnLine can now insert rows in parallel into explicit temporary tables that
you specify in SQL statements of the form SELECT....INTO TEMP. For example,
OnLine can perform the inserts in parallel into the temporary table,
temp_table, as shown in the following example:

SELECT * FROM table1 INTO TEMP temp_table

OnLine performs this type of parallel insert provided that you set the
following configuration parameters as indicated:

■ PDQPRIORITY > 0

■ DBSPACETEMP is set to a list of two or more dbspaces.

The first item, PDQPRIORITY > 0, is a requirement that you must meet for any
query that you wish OnLine to perform in parallel.

The second item, that DBSPACETEMP is set to a list of two or more dbspaces,
is required because of the way that OnLine performs the insert. To perform
the insert in parallel, OnLine first creates a fragmented temporary table. So
that OnLine knows where to store the fragments of the temporary table, you
must specify a list of two or more dbspaces in the DBSPACETEMP configu-
ration parameter. In addition, you must set DBSPACETEMP to indicate storage
space for the fragments before you execute the SELECT...INTO statement.

OnLine performs the parallel insert by writing in parallel to each of the
fragments in a round-robin fashion. Performance improves as you increase
the number of fragments.
OnLine Enhancements 1-29

Implicit Inserts Using INSERT INTO...SELECT
Implicit Inserts Using INSERT INTO...SELECT
OnLine can also insert rows in parallel into implicit temporary tables that it
creates when it processes SQL statements of the form INSERT INTO...SELECT.
For example, OnLine processes the following INSERT statement in parallel:

INSERT INTO target_table SELECT * FROM source_table

OnLine processes this type of INSERT statement in parallel only when the
source and target tables meet the following criteria:

■ The target table has no enabled referential constraints or triggers.

■ The target table is not a remote table.

■ In a database with logging, the target table does not contain filtering
constraints.

■ The source table does not contain columns of data type TEXT or BYTE.

OnLine does not process multirow inserts that reference a stored procedure.
For example, OnLine never processes the following statement in parallel:

INSERT INTO table1 EXECUTE PROCEDURE ins_proc

For more information on parallel processing, see Chapter 18, “What Is
PDQ?” in the INFORMIX-OnLine Dynamic Server Administrator’s Guide.

Enhancements to Existing SMI Tables
When you install and initialize OnLine for the first time, it checks for an
existing sysmaster database. If OnLine finds an existing sysmaster database,
it takes the following course of action:

■ Converts the existing sysmaster database to the current SMI format

■ Preserves all of the ON-Archive tables that it encounters

■ Preserves the sysaudit table that contains all of the auditing masks

In addition, OnLine sends a message to the message log that indicates that it
is either building or upgrading the sysmaster database.

The remainder of this section documents the columns that were added to
four of the existing SMI tables.
1-30 Guide to 7.1 Feature Enhancements

syssessions
syssessions
The syssessions table contains the following new column:

syssesprof
The syssesprof table contains the following new columns:

sysptprof
The sysptprof table contains the following new columns:

Column Type Description

pooladdr int Session pool address

Column Type Description

pagreads int Number of pages read from disk

pagwrites int Number of pages written to disk

total_sorts int Total number of sorts performed

dsksorts int Number of sorts that required disk I/O

max_sortdiskspace int Maximum disk space required by a sort

Column Type Description

pagreads int Number of pages read from disk

pagwrites int Number of pages written to disk
OnLine Enhancements 1-31

sysprofile
sysprofile
The sysprofile table contains the following new columns:

Column Type Description

totsorts int Total number of sorts performed

dsksorts int Number of sorts that required disk I/O

srtspmax int Maximum disk space required by a sort
1-32 Guide to 7.1 Feature Enhancements

2
Chapter
Connectivity Enhancements
Stream Pipes . 2-3
Description of Stream Pipes 2-3
The sqlhosts Entries for Stream Pipes 2-4
Advantages and Disadvantages of Stream Pipes 2-5

Enhancements to the sqlhosts File. 2-5
The servername Field 2-6
The nettype Field 2-6
The hostname Field 2-6

Length of the hostname Entry 2-6
Using an IP Address with TCP/IP Connections 2-7
Wildcard Addressing with TCP/IP Connections 2-8
Using Wildcard Addressing 2-9

The servicename Field 2-11
The options Field 2-12

The keep-alive Option 2-13
The Security Option 2-14
The Buffer-Size Option 2-15
Syntax Rules for the options Field 2-16

The /INFORMIXTMP Directory 2-16

Size Option for the INFORMIX-SE sqlexecd Log File 2-17
The -l Option 2-17
The -f Option 2-18

Calculating the Maximum Size of the Log File 2-18

2-2 Guid
e to 7.1 Feature Enhancements

This chapter discusses connectivity-related changes introduced in this
release. The overall architecture of client/server connectivity is the same as
that of earlier versions of INFORMIX-OnLine Dynamic Server and
INFORMIX-SE.

For more information about connectivity, refer to the INFORMIX-OnLine
Dynamic Server Administrator’s Guide and the INFORMIX-SE Administrator’s
Guide.

Stream Pipes
If the client and server are on different computers, you must use network
connections. If the client and server are on the same computer, you can
connect to an OnLine database server using the following types of
connections:

■ Network (local loopback)

■ Shared memory

■ Stream pipe

Local-loopback and shared-memory connections are described in the
INFORMIX-OnLine Dynamic Server Administrator’s Guide.

Description of Stream Pipes
A named stream pipe is a UNIX interprocess communication (IPC) facility that
allows processes on the same computer to communicate with each other. You
can use stream-pipe connections any time the client and the database server
are on the same computer. You can also use stream-pipe connections for
distributed database operations when both database servers are on the same
computer.
Connectivity Enhancements 2-3

The sqlhosts Entries for Stream Pipes
This documentation refers to a named stream pipe as simply a stream pipe.
Named stream pipes are also sometimes referred to as mounted streams.
Stream pipes are not available on all computers. Check the machine notes file
(ONLINE_7.1) and your system documentation for information about stream
pipes on your computer.

The sqlhosts Entries for Stream Pipes
For a stream-pipe connection, the entry in the nettype field of the sqlhosts
file is onipcstr.

The value in the servicename field can be any short combination of letters
that is unique among all the OnLine database servers on the same computer.
For simplicity, Informix suggests that you use the dbservername in the
servicename field for stream-pipe connections.

The following table shows a possible sqlhosts entry for a stream-pipe
connection:

OnLine uses the servicename to create a file that stores information
about the stream-pipe connection. OnLine stores this file as
/INFORMIXTMP/servicename.str. For example, if the servicename is server1,
the file that OnLine creates is /INFORMIXTMP/server1.str.
On some computers, OnLine also creates a second file called
/INFORMIXTMP/servicename.exp. Do not edit or delete these files.

servername nettype hostname servicename options

server1 onipcstr dallas server1
2-4 Guide to 7.1 Feature Enhancements

Advantages and Disadvantages of Stream Pipes
Advantages and Disadvantages of Stream Pipes
Stream-pipe connections have the following advantage:

■ Unlike shared-memory connections, stream pipes do not pose the
security risk of being overwritten or read by other programs that
explicitly access the same portion of shared memory.

Stream-pipe connections have the following disadvantages:

■ Stream-pipe connections might be slower than shared-memory
connections on some computers.

■ Stream pipes are not available on all computers.

Enhancements to the sqlhosts File
The $INFORMIXDIR/etc/sqlhosts file contains information that the client (or
another database server) uses to find and connect to a database server. Each
entry (each line) in the sqlhosts file describes a potential connection to a
database server. The sqlhosts file includes the following fields:

■ servername

■ nettype

■ hostname

■ servicename

■ options

In addition to the enhancements to the sqlhosts file itself, a new environment
variable, INFORMIXSQLHOSTS, lets you specify an alternative location for
the sqlhosts file. This environment variable is described in
“INFORMIXSQLHOSTS” on page 3-152.

The following sections describe the options field and enhancements to the
other fields. The INFORMIX-OnLine Dynamic Server Administrator’s Guide
and the INFORMIX-SE Administrator’s Guide have full discussions of the
sqlhosts file.
Connectivity Enhancements 2-5

The servername Field
The servername Field
The servername field contains the name of a database server. The
servername field has not changed in this version of the Informix database
servers.

The nettype Field
The support of stream-pipe connections requires a new value for nettype,
onipcstr. The valid nettype entries for OnLine are as follows:

Tip: You can use ol in the nettype entry instead of on (for example, olipcshm), but
the preferred style uses on.

The hostname Field
The hostname field specifies the name of the computer where the database
server resides. The hostname field has the following enhancements:

■ You can use a longer entry than previously.

■ You can use internet IP addresses with TCP/IP connections.

■ You can use wildcards with TCP/IP connections.

Length of the hostname Entry

In earlier releases of Informix database servers, the maximum length of an
entry in the hostname field was 128 characters. This enhancement increases
the maximum length of the hostname entry to 256 characters.

nettype entry Type of connection

onipcshm shared-memory connection

onipcstr stream-pipe connection

onsoctcp TCP/IP connection using sockets

ontlitcp TCP/IP connection using TLI

ontlispx IPX/SPX connection using TLI
2-6 Guide to 7.1 Feature Enhancements

The hostname Field
Using an IP Address with TCP/IP Connections

For TCP/IP connections (both TLI and sockets), you can now use the actual
internet IP address as the host name instead of the host alias found in the
/etc/hosts file. The IP address is always composed of four sets of one to three
integers, separated by periods. Figure 2-1 shows a sample /etc/hosts file with
IP addresses and host names. The host aliases are optional and can be
omitted.

Figure 2-1
A sample /etc/hosts file

Using the IP address from Figure 2-1, the following two sqlhosts entries are
equivalent:

Using an IP address speeds up connection time. However, because
computers are usually known by their host name, using IP addresses in the
sqlhosts file makes it less convenient to identify the computer with which an
entry is associated.

You can find the IP address from the net address field of the /etc/hosts file or
by using the UNIX arp or ypmatch command.

Internet IP address Host name Host alias(es)

157.11.192.127 smoke

49.192.4.63 odyssey

37.1.183.92 knight sales

servername nettype hostname servicename options

sales ontlitcp 37.1.183.92 sales_ol

sales ontlitcp knight sales_ol
Connectivity Enhancements 2-7

The hostname Field
Wildcard Addressing with TCP/IP Connections

You can use wildcard addressing in the hostname field of the sqlhosts file
when both of the following conditions are met:

■ You are using TCP/IP connections.

■ The computer where the database server resides has multiple
network-interface cards (for example, three Ethernet cards).

If the preceding conditions are met, you can use an asterisk (*) as a wildcard
in the sqlhosts file used by the database server. When you enter an asterisk
in the hostname field, the database server can accept connections at any valid
IP address on its host computer.

Each IP address is associated with a unique hostname. When a computer has
multiple network-interface cards, as in Figure 2-2 on page 2-9, the /etc/hosts
file must have an entry for each interface card. For example, the /etc/hosts file
for the texas computer might include these entries:

You can use the wildcard (*) alone or as a prefix for a host name or IP address,
as shown in Figure 2-3 on page 2-10. The wildcard in the hostname field is
meaningful only to the database server. If a client application uses an
sqlhosts file entry that contains a wildcard, the client application simply
ignores the wildcard and searches for a host name after the wildcard.

If the client application and database server share an sqlhosts file, you can
specify both the asterisk and a host name or IP address in the hostname field
(for example, *texas1 or *123.34.6.81). The client application ignores the
asterisk and uses the host name (or IP address) to make the connection, and
the database server uses the wildcard (*) to accept a connection from any IP
address.

The wildcard format allows the database server to use any available
connection. However, accepting a connection that uses the wildcard requires
more CPU time than accepting a connection that uses an explicit host name or
IP address. Do not use the wildcard format merely to save typing.

Internet IP address Host name Host alias(es)

Card 1 123.34.6.81 texas1

Card 2 123.34.6.82 texas2
2-8 Guide to 7.1 Feature Enhancements

The hostname Field
Using Wildcard Addressing

Figure 2-2 shows a database server on a computer (texas) that has two
network-interface cards. The two client sites use different network cards to
communicate with the database server.

The sqlhosts File for the Database Server

The sqlhosts file for the texas_online database server can include any one of
the entries in Figure 2-3 on page 2-10.

Important: You can include only one of these entries in your sqlhosts file.

Figure 2-2
Using multiple network-interface cards

texas

OnLine

Client

texas_online

iowa

kansas

Client

card 1

card 2

Network-
interface
card

Network-
interface
card
Connectivity Enhancements 2-9

The hostname Field
Figure 2-3
Possible entries in the sqlhosts file for the texas_online database server

If any of the preceding lines are in its sqlhosts file, the texas_online database
server can accept client connections from either of the network cards. The
database server finds the wildcard in the hostname field and ignores the
explicit hostname.

Tip: For clarity and ease of maintenance, Informix recommends that you
include a host name when you use the wildcard in the hostname field (that
is, use *host instead of simply *).

The sqlhosts Files for the Client Applications

The sqlhosts file used by a client application must contain an explicit host
name or IP address. The client application on iowa can use any one of the
entries shown in Figure 2-4 in its sqlhosts file.

Important: You can include only one of these entries in your sqlhosts file.

Figure 2-4
Possible entries in the sqlhosts file for the client application on iowa

The client application ignores the wildcard in the hostname field.

servername nettype hostname servicename options

texas_online ontlitcp *texas1 pd1_on

texas_online ontlitcp *123.34.6.81 pd1_on

texas_online ontlitcp *texas2 pd1_on

texas_online ontlitcp *123.34.6.82 pd1_on

texas_online ontlitcp * pd1_on

servername nettype hostname servicename options

texas_online ontlitcp *texas1 pd1_on

texas_online ontlitcp *123.34.6.81 pd1_on

texas_online ontlitcp texas1 pd1_on

texas_online ontlitcp 123.34.6.81 pd1_on
2-10 Guide to 7.1 Feature Enhancements

The servicename Field
The client application on kansas can use any one of the entries shown in
Figure 2-5 in its sqlhosts file.

Important: You can include only one of these entries in your sqlhosts file.

Figure 2-5
Possible entries in the sqlhosts file for the client application on kansas

The servicename Field
The servicename field tells the network software how to find the database
server on a specified host.

For the TCP/IP network protocol, you can use the actual TCP listen port
number as the service name. The TCP port number is in the port# field of the
/etc/services file. You can also use the UNIX arp or ypmatch command to find
the port number. Figure 2-6 shows a sample /etc/services file.

Figure 2-6
A sample /etc/services file

Using the port number from Figure 2-6, the two sqlhosts entries in Figure 2-7
on page 2-12 are equivalent.

servername nettype hostname servicename options

texas_online ontlitcp *texas2 pd1_on

texas_online ontlitcp *123.34.6.82 pd1_on

texas_online ontlitcp texas2 pd1_on

texas_online ontlitcp 123.34.6.82 pd1_on

servicename port # /protocol aliases

sales_ol 1536/tcp

olport 1425/tcp port5
Connectivity Enhancements 2-11

The options Field
Figure 2-7
Comparison of two sqlhosts entries

Using the actual port number saves time when you make a connection.
However, as with the IP address in the hostname field, using the actual port
number might make administration of the sqlhosts file less convenient.

When the nettype field specifies a shared-memory connection (onipcshm) or
a stream-pipe connection (onipcstr), OnLine uses the value in the
servicename field to create a file that supports the connection. For both
onipcshm and onipcstr connections, the servicename can be any short group
of letters that is unique for all OnLine instances on the same computer.
Informix recommends that you use the dbservername as the servicename for
stream-pipe connections.

The options Field
The options field enhancement to the sqlhosts file provides additional flexi-
bility in specifying connections. You can use the options described in this
section with both OnLine and INFORMIX-SE.

The options field includes entries for the following features:

■ The keep-alive option

■ The security options

■ The buffer-size option

When you change the options in the sqlhosts file, those changes affect the
next connection a client application makes. You do not need to stop and
restart the client application to allow the changes to take effect; however, a
database server only reads its own sqlhosts entry during initialization. If you
change the options for the database server, you must reinitialize the database
server to allow the changes to take effect.

servername nettype hostname servicename options

sales ontlitcp knight sales_ol

sales ontlitcp knight 1536
2-12 Guide to 7.1 Feature Enhancements

The options Field
Important: This behavior is different from the behavior of environment variables. If
you change an environment variable, the change does not take effect until you reini-
tialize the database server.

The sqlhosts file in Figure 2-8 shows examples of the keep-alive, security,
and buffer-size options that are discussed in the following sections. On line 1,
the k=0 in the options field disables the keep-alive feature. The r=0 disables
~/.netrc file lookup for the client. On line 2, the s=2 enables /etc/hosts.equiv
lookup for the database server, and the b=5120 sets the communications
buffer size to 5120 kilobytes.

Figure 2-8
A sample sqlhosts file

The keep-alive Option

The keep-alive option is a network option that TCP/IP and IPX/SPX use. It
does not affect shared-memory, stream-pipe, or named-pipe connections.

The letter k identifies keep-alive entries in the options field, as follows:

k=0 disable the keep-alive feature
k=1 enable the keep-alive feature

When a connected client and server are not exchanging data, the keep-alive
option enables the network service to periodically check the connection. If
the receiving end of the connection does not respond within the time
specified by the parameters of your operating system (you cannot modify
these parameters), the connection is considered broken and all resources
related to the connection are released.

When the keep-alive option is enabled, the operating system reserves
resources for the connection until the specified time expires. If nonstandard
disconnections are frequent (for example, PC users shut off the power
without first exiting from the client application), the operating system might
be wasting resources.

servername nettype hostname servicename options

Line 1 payroll ontlitcp dewar py1 k=0,r=0

Line 2 personnel ontlispx skinner prsnl_ol s=2,b=5120
Connectivity Enhancements 2-13

The options Field
When the keep-alive option is disabled, the network service immediately
detects the broken connection and frees up resources. However, this feature
has a disadvantage. If the network is slow, the network service might treat a
slow response as a broken connection.

When the keep-alive option is disabled, the network service immediately
considers the connection broken when there are no responses from the
receiving end.

If you do not include the keep-alive option in the options field, the keep-alive
feature is enabled by default. You can set this option on the server side only,
the client side only, or on both sides. For most cases, Informix recommends
that you enable the keep-alive option.

The Security Option

The security option lets you disable the operating system security-file
lookup. The letter s identifies server-side settings and the letter r identifies
client-side settings. You can set both options in the options field. A client
ignores s settings and a database server ignores r settings.

The following table shows the possible settings for r and s:

Setting Result

r=0 Disables the ~/.netrc lookup from the client side

r=1 Enables the ~/.netrc lookup from the client side
(default setting for the client side)

s=0 Disables both /etc/hosts.equiv and ~/.rhosts lookup from the server side

s=1 Enables only the /etc/hosts.equiv lookup from the server side

s=2 Enables only the ~/.rhosts lookup from the server side

s=3 Enables both /etc/hosts.equiv and ~/.rhosts lookup on the server side
(default setting for the server side)
2-14 Guide to 7.1 Feature Enhancements

The options Field
The security options let you control the way a client (user) gains access to a
database server by modifying the sqlhosts file. By default, an Informix
database server searches the /etc/hosts.equiv and the ~/.rhosts file of the user
to determine whether a client host is trusted. With the security options, you
can specifically enable or disable the use of either or both of the hosts.equiv
and .rhosts files.

For example, if you want to prevent end users from specifying trusted hosts
in their own ~/.rhosts file, you can disable the ~/.rhosts lookup by setting
s=1 in the options field of the sqlhosts file for the database server.

Important: Do not disable the /etc/hosts.equiv lookup in database servers that are
used in distributed database operations. That is, if you expect to use the database
server in distributed processing, do not set s=0 or s=2.

The Buffer-Size Option

Use the buffer-size option (b=) to specify the space (in bytes) reserved for the
communications buffer. The buffer-size option applies only to connections
that use the TCP/IP network protocol. IPX/SPX, shared-memory, and stream-
pipe connections ignore the buffer-size setting.

You can use this option when the default size is not efficient for a particular
application. For example, for an application that uses many 32-kilobyte
blobs, you could set the size of the communications buffer to 32-kilobytes
(assuming that the network server on your operating system supports a
32-kilobyte buffer).

Adjusting the buffer size allows you to use system and network resources
more efficiently; however, if the buffer size is set too high, the user receives a
connection-reject error because no memory can be allocated. For example, if
you set b=64000 on a system that has 1000 users, the system might require
64 megabytes of memory for the communications buffers. This setting might
exhaust the memory resources of the computer.

On many operating systems, the maximum buffer size supported for TCP/IP
is 16 kilobytes. To determine the maximum allowable buffer size, refer to the
documentation for your operating system or contact the technical-support
services of the vendor of your operating system.

If your network includes several different types of computers, be particularly
careful when you change the size of the communications buffer.
Connectivity Enhancements 2-15

The /INFORMIXTMP Directory
Tip: Informix recommends that you set the client-side communications buffer and
the server-side communications buffer to the same value.

Syntax Rules for the options Field

Each item in the options field has the following format:

letter=value

You can combine several items in the options field. The items must be
separated with commas and no whitespace is allowed. You can include the
items in any order. The following examples show both legal and illegal
syntax:

k=0,s=3,b=5120 valid entry
s=3,k=0,b=5120 equivalent to the preceding entry

k = 0,b = 5120 illegal: includes spaces
k=s=0 illegal: cannot combine entries

The /INFORMIXTMP Directory
OnLine generates some network-related internal files and stores them in the
/INFORMIXTMP directory. The following list includes examples of such files:

■ .inf.servicename

■ VP.servername.nnC

■ servicename.str

■ servicename.exp

OnLine creates the /INFORMIXTMP directory at initialization time, if the
directory does not already exist. You do not need to examine or edit the files
in /INFORMIXTMP, but you do need to make sure that the UNIX system
administrator knows that this directory is useful and should not be deleted.

Refer to the INFORMIX-OnLine Dynamic Server Administrator’s Guide for
more information about these files.
2-16 Guide to 7.1 Feature Enhancements

Size Option for the INFORMIX-SE sqlexecd Log File
Size Option for the INFORMIX-SE sqlexecd Log File
This release of SE introduces a change in the behavior of the log file associated
with the sqlexecd daemon. In earlier versions of SE, the only way to limit the
length of the log file was to terminate the sqlexecd daemon and remove (or
edit) the file. If you use the new -f option with the sqlexecd command, the log
file no longer is allowed to grow indefinitely.

The -l Option
If the logfile specified with the -l option does not exist, the sqlexecd daemon
creates a log file and gives it the name specified in the -l option. If the log file
already exists, sqlexecd appends new information to the existing log file.

If you use a log file and do not use the -f option, you must make sure that the
file system has sufficient space for saving new client information about
connection activity.

You can specify the logfile as a simple filename, in which case the sqlexecd
daemon places the log file in the current directory. You can also specify the
logfile as a full pathname so that the log is stored in the specified directory.

sqlexecd dbservername

-f maxcon

-l logfile

dbservername is the name of the database server.
-l logfile specifies the name of a file where all client-connection

activity is recorded.
-f maxcon specifies the maximum number of connection requests

that can be recorded in the log file. The value of maxcon
must be between 0 and 32767.
Connectivity Enhancements 2-17

The -f Option
The -f Option
The -f option lets you specify the maximum number (maxcon) of connection-
request records that can be stored in the log file. When the number of records
reaches the maximum, sqlexecd renames logfile to logfile.old and creates a
new logfile. When logfile again fills up, sqlexecd again renames logfile to
logfile.old and creates a new logfile.

If you specify an illegal value for maxcon, sqlexecd automatically uses 10,000
connection requests as the default value and the log file is not allowed to
grow past 10,000 connections, or about 680 kilobytes. If you do not use the
-f option, or if for some reason sqlexecd is not able to rename the log file
when it becomes full, the log file is allowed to grow indefinitely.

The sqlexecd daemon does not keep creating more and more old files. If you
want to save all of the connection records, you can periodically copy
logfile.old into another file that will not be overwritten.

The following example starts the sqlexecd daemon for a database server
named myserver. The command starts the daemon with a log file named
mylog in the current directory and 2000 as the maximum number of
connection records.

sqlexecd myserver -l mylog -f 2000

Calculating the Maximum Size of the Log File

The number of connection records specified with the -f option is not the size
of the log file. It is the number of connection requests that can be recorded in
the log file. The length of each connection request is about 70 characters. You
can calculate the approximate maximum size (in bytes) of the log file with the
following calculation:

maximum_logfile_size = maxcon * 70

Tip: This maximum size is not an exact value because connection-request records are
not always exactly 70 bytes long. In certain cases, the connection-request record is
much longer or shorter than 70 bytes. For example, some of the records contain the
full path of the database you selected. If the pathname is long, the log record might be
longer than 70 bytes.
2-18 Guide to 7.1 Feature Enhancements

3
Chapter
SQL Enhancements
How to Use This Chapter 3-3
Scope of Descriptions. 3-3
Relationship of This Chapter to SQL Manuals 3-4
Organization of This Chapter 3-4

New and Changed SQL Statements 3-6
ALTER TABLE 3-7
CONNECT . 3-16
CREATE INDEX 3-17
CREATE PROCEDURE 3-24
CREATE ROLE 3-26
CREATE TABLE 3-28
CREATE TRIGGER 3-33
DATABASE . 3-37
DROP ROLE. 3-38
DROP TABLE 3-39
GET DIAGNOSTICS 3-41
GRANT . 3-42
GRANT FRAGMENT 3-48
RENAME DATABASE 3-57
REVOKE . 3-58
REVOKE FRAGMENT 3-70
SELECT . 3-75
SET . 3-77
SET ROLE . 3-105
SET SESSION AUTHORIZATION 3-107
START VIOLATIONS TABLE 3-109
STOP VIOLATIONS TABLE 3-128
UPDATE STATISTICS 3-130

3-2 Guid
Changed SQL Segments 3-134
Aggregate Expression. 3-135
Identifier Segment 3-139

New and Changed System Catalog Tables 3-141
SYSCOLDEPEND 3-142
SYSCONSTRAINTS 3-143
SYSFRAGAUTH 3-144
SYSOBJSTATE 3-146
SYSROLEAUTH 3-147
SYSUSERS . 3-148
SYSVIOLATIONS 3-149

New and Changed Environment Variables 3-150
INFORMIXOPCACHE 3-151
INFORMIXSQLHOSTS 3-152
NODEFDAC . 3-153
OPTCOMPIND 3-154
PSORT_NPROCS 3-155

Changed Utilities 3-157
The dbexport Utility 3-158
The dbload Utility 3-159
The dbschema Utility 3-161

Changes to the SQL Communications Area 3-174
SQLWARN Array 3-175
e to 7.1 Feature Enhancementse

This chapter describes the new and changed SQL statements in this
release. It also describes other new and changed SQL items such as SQL
segments, system catalog tables, environment variables, utilities, and the SQL
Communications Area (SQLCA).

For descriptions of new and changed SQL error messages, see the “Error
Messages” section at the end of this guide.

How to Use This Chapter
This section covers the following topics:

■ Scope of descriptions of SQL items

■ Relationship of this chapter to the Version 7.1UC1 SQL manuals

■ Organization of this chapter

■ New and changed information by SQL item type

Scope of Descriptions
This chapter describes the new and changed SQL items in this release.

New items are described in their entirety. For example, the descriptions of
new SQL statements include a statement of purpose, a syntax diagram, a
syntax table, rules of usage, examples, and references to related items.

For changed items, usually only the additions and modifications are
described. For example, if a changed statement has a changed syntax
diagram for one clause, the description includes the changed syntax diagram
for that clause and an explanation of the change but does not include syntax
diagrams for unchanged clauses.
SQL Enhancements 3-3

Relationship of This Chapter to SQL Manuals
In a few cases, such as the REVOKE statement and the dbschema utility, a
changed item is described in its entirety. In these cases the changes to the item
are so extensive that a complete description is warranted.

Relationship of This Chapter to SQL Manuals
This chapter supplements the information in the Version 7.1UC1 SQL
manuals:

■ SQL Quick Syntax Guide, Version 7.1UD1

■ Informix Guide to SQL: Reference, Version 7.1UC1

■ Informix Guide to SQL: Syntax, Version 7.1UC1

■ Informix Guide to SQL: Tutorial, Version 7.1UC1

Use this chapter with the SQL manuals to get current and complete infor-
mation about SQL items. In particular, use the SQL manuals to get complete
information for existing items that have changed. Because the descriptions of
such items in this chapter cover only the changes to the item, you need to
consult the appropriate SQL manual for information about the unchanged
parts of the item.

See the next section for a table that lists the sections in this chapter and the
corresponding SQL manual and chapter for each section.

Organization of This Chapter
This chapter is divided into several sections. Each section covers a particular
type of SQL item and begins with a summary and list of the new and changed
items within the section. New and changed SQL items appear in alphabetical
order within the section.

The following table lists the sections of this chapter. For each section, the table
also lists the title and chapter of the Version 7.1UC1 SQL manual that describes
SQL items of this type.
3-4 Guide to 7.1 Feature Enhancements

Organization of This Chapter
The following abbreviations are used in this table:

■ SQLR stands for the Informix Guide to SQL: Reference.

■ SQLS stands for the Informix Guide to SQL: Syntax.

■ SQLT stands for the Informix Guide to SQL: Tutorial.

These abbreviations also appear in the syntax diagrams in this chapter.

Section in This Chapter
Corresponding
SQL Manual

Corresponding SQL Manual
Chapter

“New and Changed SQL
Statements”

SQLS Chapter 1, “SQL Statements”

“Changed SQL Segments” SQLS Chapter 1, “SQL Statements”

“New and Changed System
Catalog Tables”

SQLR Chapter 2, “System Catalog”

“New and Changed Environment
Variables”

SQLR Chapter 4, “Environment
Variables”

“Changed Utilities” SQLR Chapter 5, “SQL Utilities”

“Changes to the SQL
Communications Area”

SQLT Chapter 5, “Programming
with SQL”
SQL Enhancements 3-5

New and Changed SQL Statements
New and Changed SQL Statements
This section describes new and changed SQL statements.

The following SQL statements are new in this release:

■ CREATE ROLE

■ DROP ROLE

■ GRANT FRAGMENT

■ RENAME DATABASE

■ REVOKE FRAGMENT

■ SET

■ SET ROLE

■ SET SESSION AUTHORIZATION

■ START VIOLATIONS TABLE

■ STOP VIOLATIONS TABLE

The following SQL statements are changed in this release.

■ ALTER TABLE

■ CONNECT

■ CREATE INDEX

■ CREATE PROCEDURE

■ CREATE TABLE

■ CREATE TRIGGER

■ DATABASE

■ DROP TABLE

■ GET DIAGNOSTICS

■ GRANT

■ REVOKE

■ SELECT

■ UPDATE STATISTICS
3-6 Guide to 7.1 Feature Enhancements

ALTER TABLE
ALTER TABLE
The ALTER TABLE statement has several changes in syntax and behavior in
this release. The changed clauses and options are described on the following
pages.

Usage
The following new general restrictions apply to the use of the ALTER TABLE
statement:

■ You cannot add, drop, or modify a column if the table that contains
the column has a violations and diagnostics table associated with it.

■ You cannot alter a violations or diagnostics table.

■ You cannot add a constraint to a violations or diagnostics table.

■ Previously, you only needed the Alter table-level privilege to alter a
table. Now, to use the ALTER TABLE statement, you must be granted
both the Alter table-level privilege and the Resource database-level
privilege on the database that contains the table.
SQL Enhancements 3-7

ALTER TABLE
ADD Clause

The NOT NULL keywords have been removed from the ADD clause in this
release.

,

Add Column
Clause

Add Column
Clause

()

ADD

,

Add Column
Clause

column
nameBEFORE

new
column
name

Data Type
see SQLS

DEFAULT
Clause

see SQLS New Column
Constraint
Definition

p. 3-9

ADD Clause
3-8 Guide to 7.1 Feature Enhancements

ALTER TABLE
New Column Constraint Definition

You can now assign a constraint name to the NOT NULL keywords, and you
can set the object mode of the not null constraint. In addition, you can now
set the object mode of any type of constraint.

Constraint Mode Definitions

Constraint-
Mode

Definitions
p. 3-9

UNIQUE

DISTINCT

PRIMARY
KEY

REFERENCES
Clause

see SQLS

CHECK
Clause

see SQLS

Constraint-
Mode

Definitions
p. 3-9

+

New Column
Constraint
Definition

+NOT
NULL

+

CONSTRAINT

FILTERING

DISABLED

WITH
ERROR

Constraint-Mode
Definitions

Constraint
Name

see SQLS
ENABLED

WITHOUT
ERROR
SQL Enhancements 3-9

ALTER TABLE
New Capabilities

The Constraint-Mode Definitions option expresses two new capabilities:

■ You can assign a name to a not null constraint on a column, and you
can set the not null constraint to one of the following object modes:
disabled, enabled, or filtering.

■ You can set any type of column-level constraint or table-level
constraint to the disabled, enabled, or filtering object modes.

Description of Constraint Modes

You can set constraints to the following modes: disabled, enabled, or filtering.
If you choose the filtering mode, you can specify the WITHOUT ERROR or
WITH ERROR options. These modes and options are described in the
following list:

disabled A constraint created in disabled mode is not enforced during
insert, delete, and update operations.

enabled A constraint created in enabled mode is enforced during
insert, delete, and update operations. If a target row causes a
violation of the constraint, the statement fails.

filtering A constraint created in filtering mode is enforced during
insert, delete, and update operations. If a target row causes a
violation of the constraint, the statement continues processing,
but the bad row is written to the violations table associated
with the target table. Diagnostic information about the con-
straint violation is written to the diagnostics table associated
with the target table.
WITHOUT
ERROR

When a filtering mode constraint is violated
during an insert, delete, or update operation, no
integrity-violation error is returned to the user.

WITH
ERROR

When a filtering mode constraint is violated
during an insert, delete, or update operation, an
integrity-violation error is returned to the user.
3-10 Guide to 7.1 Feature Enhancements

ALTER TABLE
Using Constraint Modes

You must observe the following rules when you use constraint modes:

■ If you do not specify the object mode of a column-level or table-level
constraint explicitly, the default mode is enabled.

■ If you do not specify the with error or without error option for a
filtering mode constraint, the default error option is without error.

■ When you add a column-level or table-level constraint to a table and
specify the disabled object mode for the constraint, your ALTER
TABLE statement succeeds even if existing rows in the table violate
the constraint.

■ When you add a column-level or table-level constraint to a table and
specify the enabled or filtering object mode for the constraint, your
ALTER TABLE statement succeeds provided that no existing rows in
the table violate the new constraint. However, if any existing rows in
the table violate the constraint, your ALTER TABLE statement fails
and returns an error.

■ When you add a column-level or table-level constraint to a table in
the enabled or filtering object mode, and existing rows in the table
violate the constraint, erroneous rows in the base table are not
filtered to the violations table. Thus, you cannot use a violations table
to detect the erroneous rows in the base table.
SQL Enhancements 3-11

ALTER TABLE
MODIFY Clause

The NOT NULL keywords have been removed from the MODIFY clause in this
release.

Adding a Constraint When Existing Rows Violate the Constraint

If you use the MODIFY clause to add a constraint in the enabled mode and
receive an error message because existing rows would violate the constraint,
you can take the following steps to add the constraint successfully:

1. Add the constraint in the disabled mode.

Issue the ALTER TABLE statement again, but this time specify the
DISABLED keyword in the MODIFY clause.

2. Start a violations and diagnostics table for the target table with the
START VIOLATIONS TABLE statement.

3. Issue a SET statement to switch the object mode of the constraint to
the enabled mode.

When you issue this statement, existing rows in the target table that
violate the constraint are duplicated in the violations table; however,
you receive an integrity-violation error message, and the constraint
remains disabled.

,

Modify Column
Clause

()

MODIFY

,

Modify Column
Clause

 column
name Data Type

see SQLS DEFAULT
Clause

see SQLS New Column
Constraint
Definition

p. 3-9

Modify Column
Clause

MODIFY
Clause
3-12 Guide to 7.1 Feature Enhancements

ALTER TABLE
4. Issue a SELECT statement on the violations table to retrieve the non-
conforming rows that are duplicated from the target table.

You might need to join the violations and diagnostics tables to get all
the necessary information.

5. Take corrective action on the rows in the target table that violate the
constraint.

6. After you fix all the nonconforming rows in the target table, issue the
SET statement again to switch the disabled constraint to the enabled
mode.

This time the constraint is enabled and no integrity-violation error
message is returned because all rows in the target table now satisfy
the new constraint.

ADD CONSTRAINT Clause

Changes to the ADD CONSTRAINT Clause

You can now set the object mode of a table-level constraint with the ADD
CONSTRAINT clause.

If you use the ADD CONSTRAINT clause to add a constraint in the enabled
mode and receive an error message because existing rows would violate the
constraint, you can follow a procedure to add the constraint successfully. See
“Adding a Constraint When Existing Rows Violate the Constraint” on
page 3-12.

,

Table-Level
Constraint
Definition
p. 3-14

()

ADD CONSTRAINT

ADD CONSTRAINT
Clause

Table-Level
Constraint
Definition
p. 3-14
SQL Enhancements 3-13

ALTER TABLE
Table-Level Constraint Definition

The definition of a table-level constraint now includes the ability to set the
object mode of the constraint.

Element Purpose Restrictions Syntax

column name The name of the column or col-
umns on which the constraint is
placed

If you are using OnLine, the
maximum number of columns is
16, and the total length of all the
columns cannot exceed
255 bytes. If you are using SE, the
maximum number of columns is
8, and the total length of all the
columns cannot exceed
120 bytes.

Identifier segment,
Informix Guide to
SQL: Syntax

UNIQUE

FOREIGN KEY
REFERENCES

Clause
see SQLS

CHECK
Clause

see SQLS

column
name

)(

Table-Level
Constraint Definition

PRIMARY
KEY ,

+

Constraint-Mode
Definitions

p. 3-9

+

DISTINCT

column
name

)(

,

3-14 Guide to 7.1 Feature Enhancements

ALTER TABLE
DROP CONSTRAINT Clause
You can now use the DROP CONSTRAINT clause to drop a not null specifi-
cation from a column definition because the database server treats any not
null specification as a formal constraint.

If you do not assign a name to a not null constraint when you define the
constraint in an ALTER TABLE or CREATE TABLE statement, the database
server generates a name for the constraint, just as it generates a name for any
other type of constraint that the user has not named explicitly.

To find out the system-generated or user-created name for any not null
constraint, you can query the sysconstraints or syscoldepend system catalog
table. For an example of such a query, see the DROP CONSTRAINT clause of
the ALTER TABLE statement in the Informix Guide to SQL: Syntax.

References
See the SET, START VIOLATIONS TABLE, and STOP VIOLATIONS TABLE state-
ments in this guide.
SQL Enhancements 3-15

CONNECT
CONNECT
The CONNECT statement is changed in this release. The CONNECT statement
is fully described in the Informix Guide to SQL: Syntax.

The user who executes the CONNECT statement cannot have the same user
name as an existing role in the database.

The current user, or PUBLIC, must have the Connect database privilege for
the database specified in the CONNECT statement.
3-16 Guide to 7.1 Feature Enhancements

CREATE INDEX
CREATE INDEX
The CREATE INDEX statement has changed syntax and behavior in this
release. The changes to this statement are described on the following pages.

Syntax

Usage
You can now set the object mode of a unique index or a duplicate index in the
CREATE INDEX statement.

Element Purpose Restrictions Syntax

dbspace The name of the dbspace in
which you want to place the
index

The dbspace must exist at the
time you execute the statement.

Identifier segment,
Informix Guide to
SQL: Syntax

percent The percentage of each index
page that is filled by index data
when the index is created. The
default value is 90.

Value must be in the range 1-100. Literal Number
segment, Informix
Guide to SQL:
Syntax

INDEXCREATE Index
Definition
p. 3-18

IN dbspace

FRAGMENT
BY

EXPRESSION
Clause

see SQLS

CLUSTER

+

OLOL

FILLFACTOR percent

UNIQUE

DISTINCT

Object Modes
for Unique

Indexes
p. 3-19

Object Modes
for Duplicate

Indexes
p. 3-22
SQL Enhancements 3-17

CREATE INDEX
Index Definition

In the Index Definition portion of the CREATE INDEX statement, you give a
name to the index, specify the table on which the index is created, and specify
the column or columns to be used for the index. In addition, the ASC and
DESC keywords allow you to specify whether the index will be sorted in
ascending or descending order.

See the Informix Guide to SQL: Syntax for a complete description of these
aspects of the Index Definition.

Element Purpose Restrictions Syntax

column name The name of the column or
columns which you want to
index

You must observe restrictions on
the location of the columns, the
maximum number of columns,
the total width of the columns,
existing constraints on the
columns, and the number of
indexes allowed on the same
columns. See the CREATE INDEX
statement in the Informix Guide
to SQL: Syntax for an
explanation of these restrictions.

Identifier segment,
Informix Guide to
SQL: Syntax

table name The name of the table on which
the index is created

The table must exist. The table
can be a regular database table
or a temporary table.

Identifier segment,
Informix Guide to
SQL: Syntax

Synonym
Name

see SQLS

Index
Definition

ON

,

column name

DESC

()Index
Name

see SQLS
ASC

table name
3-18 Guide to 7.1 Feature Enhancements

CREATE INDEX
Object Modes for Unique Indexes

Description of Object Modes for Unique Indexes

You can set unique indexes in the following modes: disabled, enabled, and
filtering. If you choose the filtering mode, you can also specify the WITHOUT
ERROR or WITH ERROR options. The following list explains these modes and
options:

Object Modes for
Unique Indexes

ENABLED

DISABLED

WITHOUT
ERROR

WITH
ERROR

FILTERING

disabled A unique index created in disabled mode is not updated after
insert, delete, and update operations that modify the base
table. Because the contents of the disabled index are not up to
date, the optimizer does not use the index during the
execution of queries.

enabled A unique index created in enabled mode is updated after
insert, delete, and update operations that modify the base
table. Because the contents of the enabled index are up to date,
the optimizer uses the index during the execution of queries. If
an insert or update operation causes a duplicate key value to
be added to a unique enabled index, the statement fails.
SQL Enhancements 3-19

CREATE INDEX
Specifying Object Modes for Unique Indexes

You must observe the following rules when you specify object modes for
unique indexes in CREATE INDEX statements:

■ You can set a unique index to the enabled, disabled, or filtering
modes.

■ If you do not specify the object mode of a unique index explicitly, the
default mode is enabled.

■ If you do not specify the with error or without error option for a
filtering-mode unique index, the default error option is without
error.

■ When you add a new unique index to an existing base table and
specify the disabled object mode for the index, your CREATE INDEX
statement succeeds even if duplicate values in the indexed column
would cause a unique-index violation.

filtering A unique index created in filtering mode is updated after
insert, delete, and update operations that modify the base
table. Because the contents of the filtering mode index are up
to date, the optimizer uses the index during the execution of
queries. If an insert or update operation causes a duplicate key
value to be added to a unique index in filtering mode, the
statement continues processing, but the bad row is written to
the violations table associated with the base table. Diagnostic
information about the unique- index violation is written to the
diagnostics table associated with the base table.
WITHOUT
ERROR

When a unique-index violation occurs during an
insert or update operation, no integrity-violation
error is returned to the user. You can specify this
option only with the filtering object mode.

WITH
ERROR

When a unique-index violation occurs during an
insert or update operation, an integrity-violation
error is returned to the user. You can specify this
option only with the filtering object mode.
3-20 Guide to 7.1 Feature Enhancements

CREATE INDEX
■ When you add a new unique index to an existing base table and
specify the enabled or filtering object mode for the index, your
CREATE INDEX statement succeeds provided that no duplicate
values exist in the indexed column that would cause a unique-index
violation. However, if any duplicate values exist in the indexed
column, your CREATE INDEX statement fails and returns an error.

■ When you add a new unique index to an existing base table in the
enabled or filtering mode, and duplicate values exist in the indexed
column, erroneous rows in the base table are not filtered to the viola-
tions table. Thus, you cannot use a violations table to detect the
erroneous rows in the base table.

Adding a Unique Index When Duplicate Values Exist in the Column

If you attempt to add a unique index in the enabled mode and receive an
error message because duplicate values are in the indexed column, you can
take the following steps to add the index successfully:

1. Add the index in the disabled mode.

Issue the CREATE INDEX statement again, but this time specify the
DISABLED keyword.

2. Start a violations and diagnostics table for the target table with the
START VIOLATIONS TABLE statement.

3. Issue a SET statement to switch the object mode of the index to the
enabled mode.

When you issue this statement, existing rows in the target table that
violate the unique-index requirement are duplicated in the violations
table. However, you receive an integrity-violation error message,
and the index remains disabled.

4. Issue a SELECT statement on the violations table to retrieve the non-
conforming rows that are duplicated from the target table.

You might need to join the violations and diagnostics tables to get all
the necessary information.
SQL Enhancements 3-21

CREATE INDEX
5. Take corrective action on the rows in the target table that violate the
unique-index requirement.

6. After you fix all the nonconforming rows in the target table, issue the
SET statement again to switch the disabled index to the enabled
mode.

This time the index is enabled and no integrity violation error
message is returned because all rows in the target table now satisfy
the new unique-index requirement.

Object Modes for Duplicate Indexes

If you create a duplicate index, you can set the object mode of the index to the
disabled or enabled mode. The following list explains these modes:

Object Modes for
Duplicate Indexes

ENABLED

DISABLED

disabled A duplicate index is created in disabled mode. The disabled
index is not updated after insert, delete, and update operations
that modify the base table. Because the contents of the disabled
index are not up to date, the optimizer does not use the index
during the execution of queries.

enabled A duplicate index is created in enabled mode. The enabled
index is updated after insert, delete, and update operations
that modify the base table. Because the contents of the enabled
index are up to date, the optimizer uses the index during the
execution of queries. If an insert or update operation causes a
duplicate key value to be added to a duplicate enabled index,
the statement does not fail.
3-22 Guide to 7.1 Feature Enhancements

CREATE INDEX
Specifying Object Modes for Duplicate Indexes

You must observe the following rules when you specify object modes for
duplicate indexes in CREATE INDEX statements:

■ You can set a duplicate index to the enabled or disabled mode, but
you cannot set a duplicate index to the filtering mode.

■ If you do not specify the object mode of a duplicate index explicitly,
the default mode is enabled.

How the Database Server Treats Disabled Indexes
Whether a disabled index is a unique or duplicate index, the database server
effectively ignores the index during data-manipulation operations.

When an index is disabled, the database server stops updating it and stops
using it during queries, but the catalog information about the disabled index
is retained. So you cannot create a new index on a column or set of columns
if there is already a disabled index on that column or set of columns.

Similarly, you cannot create an active (not disabled) unique, foreign-key, or
primary-key constraint on a column or set of columns if the indexes needed
by the active constraint exist and are disabled.
SQL Enhancements 3-23

CREATE PROCEDURE
CREATE PROCEDURE
The CREATE PROCEDURE statement is changed in this release. The CREATE
PROCEDURE statement is fully described in the Informix Guide to SQL: Syntax.

Support for Roles
You can use roles with stored procedures. You can execute role-related
statements (CREATE ROLE, DROP ROLE, and SET ROLE) within a stored
procedure. You can also grant privileges to roles with the GRANT statement
within a procedure. Privileges that a user has acquired through enabling a
role are not relinquished when a procedure is executed.

For further information about roles, see the CREATE ROLE, DROP ROLE,
GRANT, REVOKE, and SET ROLE statements in this guide.

Limiting Privileges Granted to PUBLIC
When set to yes, the new environment variable NODEFDAC prevents privi-
leges for a new procedure that is created in owner mode in a database that is
not ANSI-compliant from being granted to PUBLIC.

For information about preventing privileges from being granted to PUBLIC,
see the NODEFDAC environment variable on page 3-153.

Restrictions on a Procedure Called in a Data Manipulation
Statement
The following new statements cannot be present in a stored procedure that is
called as part of an INSERT, UPDATE, DELETE, or SELECT statement:

■ SET

■ START VIOLATIONS TABLE

■ STOP VIOLATIONS TABLE

These statements are allowed, however, in stored procedures that are not
called as part of an INSERT, UPDATE, DELETE, or SELECT statement. In other
words, these statements are allowed in stored procedures that are called from
an EXECUTE PROCEDURE statement.
3-24 Guide to 7.1 Feature Enhancements

CREATE PROCEDURE
References
See the CREATE PROCEDURE statement in the Informix Guide to SQL: Syntax
for a complete description of this statement.
SQL Enhancements 3-25

CREATE ROLE
CREATE ROLE
Use the CREATE ROLE statement to create a new role.

Syntax

Usage
The database administrator (DBA) uses the CREATE ROLE statement to create
a new role. A role can be considered as a classification, with both users and
privileges granted to the role. The DBA can assign the privileges of a related
work task, such as engineer, to a role and then grant users to that role, instead
of granting every user the same set of privileges.

Element Purpose Restrictions Syntax

role name Name assigned to a role created
by the DBA

Maximum number of characters
is eight.

Identifier, Informix
Guide to SQL:
Syntax

A role name cannot be a user
name known to the database
server or the operating system of
the database server. A role name
cannot be in the username
column of the sysusers system
catalog table or in the grantor or
grantee columns of the
systabauth, syscolauth,
sysprocauth, sysfragauth, and
sysroleauth system catalog
tables.

CREATE ROLE role name
OL

+

3-26 Guide to 7.1 Feature Enhancements

CREATE ROLE
After a role is created, the DBA can use the GRANT statement to grant the role
to users or to other roles. When a role is granted to a user, the user must use
the SET ROLE statement to enable the role. Only then can the user use the
privileges of the role.

The CREATE ROLE statement, used with the GRANT and SET ROLE state-
ments, allows a DBA to create one set of privileges for a role and then grant
the role to many users, instead of granting the same set of privileges to many
users.

A role exists until it is dropped either by the DBA or by a user granted the role
with the WITH GRANT OPTION. Use the DROP ROLE statement to drop a role.

To create the role engineer, enter the following statement:

CREATE ROLE engineer

References
See the DROP ROLE, GRANT, REVOKE, and SET ROLE statements in this guide.

See the GRANT and REVOKE statements in the Informix Guide to SQL: Syntax.
SQL Enhancements 3-27

CREATE TABLE
CREATE TABLE
The CREATE TABLE statement has several changes in syntax and behavior in
this release. The changed clauses and options are described on the following
pages.

Syntax

You can now set the object mode of a constraint in the CREATE TABLE
statement.

Column-Definition Option

The NOT NULL keywords have been removed from the Column-Definition
option in this release.

,

TABLECREATE

Storage
Option

see
SQLS

Table
Name

see SQLS

,

,
Column

Definition
 p. 3-28

()

Table-Level
Constraint
Definition
p. 3-31Temp

Table
Clause

see
SQLS

+
WITH

ROWIDS
see

SQLS

OL

column
name

DEFAULT
Clause

see SQLS

Data Type
see SQLS

Column
Definition

Column-Level
Constraint
Definition
p. 3-29
3-28 Guide to 7.1 Feature Enhancements

CREATE TABLE
Column-Level Constraint-Definition Option

You can now assign a name to a not null constraint, and you can set the object
mode of the not null constraint. In addition, you can set the object mode of
any other type of constraint.

Constraint-Mode Definitions

UNIQUE

DISTINCT

PRIMARY
KEY

REFERENCES
Clause

see SQLS

CHECK
Clause

see SQLS

Constraint-
Mode

Definitions
p. 3-29

+

Column-Level
Constraint
Definition

+

Constraint-
Mode

Definitions
p. 3-9

+

NOT
NULL

CONSTRAINT

FILTERING

DISABLED

WITH
ERROR

Constraint-Mode
Definitions

Constraint
Name

see SQLS
ENABLED

WITHOUT
ERROR
SQL Enhancements 3-29

CREATE TABLE
New Capabilities

The Constraint-Mode Definitions option expresses two new capabilities:

■ You can assign a name to a not null constraint on a column, and you
can set the not null constraint to one of the following object modes:
disabled, enabled, or filtering.

■ You can set any type of column-level constraint or table-level
constraint to the disabled, enabled, or filtering object modes.

Description of Constraint Modes

You can set constraints in the following modes: disabled, enabled, and
filtering. If you choose filtering mode, you can specify the WITHOUT ERROR
or WITH ERROR options. The following list explains these modes and options:

disabled A constraint created in disabled mode is not enforced during
insert, delete, and update operations.

enabled A constraint created in enabled mode is enforced during
insert, delete, and update operations. If a target row causes a
violation of the constraint, the statement fails.

filtering A constraint created in filtering mode is enforced during
insert, delete, and update operations. If a target row causes a
violation of the constraint, the statement continues processing,
but the bad row is written to the violations table associated
with the target table. Diagnostic information about the con-
straint violation is written to the diagnostics table associated
with the target table.
WITHOUT
ERROR

When a filtering mode constraint is violated dur-
ing an insert, delete, or update operation, no
integrity-violation error is returned to the user.

WITH
ERROR

When a filtering mode constraint is violated dur-
ing an insert, delete, or update operation, an
integrity-violation error is returned to the user.
3-30 Guide to 7.1 Feature Enhancements

CREATE TABLE
Using Constraint-Mode Definitions

You must observe the following rules concerning the use of constraint-mode
definitions:

■ If you do not specify the object mode of a column-level constraint or
table-level constraint explicitly, the default mode is enabled.

■ If you do not specify the with error or without error option for a
filtering mode constraint, the default error option is without error.

■ Constraints defined on temporary tables are always in the enabled
mode. You cannot create a constraint on a temporary table in the
disabled or filtering mode, nor can you use the SET statement to
switch the object mode of a constraint on a temporary table to the
disabled or filtering mode.

■ You cannot assign a name to a not null constraint on a temporary
table.

■ You cannot create a constraint on a table that is serving as a violations
or diagnostics table for another table.

Table-Level Constraint Definition Option

You can now set the object mode of any type of table-level constraint.

UNIQUE

FOREIGN KEY
REFERENCES

Clause
see SQLS

CHECK
Clause

see SQLS

column
name

)(

Table-Level
Constraint Definition

PRIMARY
KEY ,

+

Constraint-Mode
Definitions

p. 3-29

+

DISTINCT

column
name

)(

,

SQL Enhancements 3-31

CREATE TABLE
Limiting Privileges Granted to PUBLIC
When set toyes, the new environment variable NODEFDAC prevents default
privileges (Select, Insert, Update, Delete, and Index) on a new table in a
database that is not ANSI-compliant from being granted to PUBLIC.

For information about preventing privileges from being granted to PUBLIC,
see the NODEFDAC environment variable on page 3-153.

References
To understand the new functionality for specifying the object modes of
database objects and detecting integrity violations in connection with these
database objects, refer to the following new statements in this guide: SET,
START VIOLATIONS TABLE, and STOP VIOLATIONS TABLE. See the CREATE
ROLE, DROP ROLE, GRANT, REVOKE, and SET ROLE statements in this guide
for further information about roles.
3-32 Guide to 7.1 Feature Enhancements

CREATE TRIGGER
CREATE TRIGGER
The CREATE TRIGGER statement has changes in syntax and behavior in this
release. These changes are described in the following pages.

Syntax

The new Trigger Object Modes option allows you to specify the object mode
for the trigger that you are creating.

Trigger
Name

see SQLS
CREATE TRIGGER

DB

DELETE

UPDATE
Clause

see SQLS

E/C

ON

ON

Insert
REFERENCING

 Clause
see SQLS

Action
Clause

see SQLS

Table
Name

see SQLS

Delete
REFERENCING

 Clause
see SQLS

Action
Clause

see SQLS

Table
Name

see SQLS

Update
REFERENCING

Clause
see SQLS

Action
Clause

see SQLS

Table
Name

see SQLS
INSERT ON

Action
Clause

Referencing
see SQLS

Action
Clause

Referencing
see SQLS

Action
Clause

Referencing
see SQLS

E/CO
+ Trigger Object

Modes
p. 3-34
SQL Enhancements 3-33

CREATE TRIGGER
Trigger Object Modes

The Trigger Object Modes option allows you to create a trigger in either the
enabled or disabled object mode.

Description of Object Modes

You can create triggers in the following object modes:

Specifying Object Modes for Triggers

You must observe the following rules when you specify the object mode for
a trigger in the CREATE TRIGGER statement:

■ If you do not specify the disabled or enabled object modes explicitly,
the default object mode is enabled.

■ In contrast to unique indexes and constraints of all types, you cannot
set triggers to the filtering object mode because a trigger does not
impose any type of data-integrity requirement on the tables in the
database.

Trigger Object
Modes

DISABLED

ENABLED

disabled When a trigger is created in disabled mode, the database
server does not execute the triggered action when the trigger
event (an insert, delete, or update operation) takes place. In
effect, the database server ignores the trigger even though its
catalog information is maintained.

enabled When a trigger is created in enabled mode, the database server
executes the triggered action when the trigger event (an insert,
delete, or update operation) takes place.
3-34 Guide to 7.1 Feature Enhancements

CREATE TRIGGER
■ You can use the SET statement to switch the mode of a disabled
trigger to the enabled mode. Once the trigger has been re-enabled,
the database server executes the triggered action whenever the
trigger event takes place. However, the re-enabled trigger does not
perform retroactively. The database server does not attempt to
execute the trigger for rows that were inserted, deleted, or updated
after the trigger was disabled and before it was enabled; therefore,
you should be cautious about disabling a trigger. If disabling a
trigger will eventually destroy the semantic integrity of the database,
do not disable the trigger in the first place.

■ You cannot create a trigger on a violations table or a diagnostics
table.

Rules for Stored Procedures
The following new statements cannot be present in a stored procedure that is
used as a triggered action:

■ SET

■ START VIOLATIONS TABLE

■ STOP VIOLATIONS TABLE

For example, if an EXECUTE PROCEDURE statement is the triggered action,
the procedure called by the EXECUTE PROCEDURE statement cannot contain
any of these new statements. In the following CREATE TRIGGER statement,
the triggered action is an EXECUTE PROCEDURE statement that calls the
procedure named upd_items_p1:

CREATE TRIGGER upqty
UPDATE OF quantity ON items
BEFORE (EXECUTE PROCEDURE upd_items_p1)

The upd_items_p1 procedure cannot contain the SET, START VIOLATIONS
TABLE, or STOP VIOLATIONS TABLE statements in its statement block.

Support for Roles
You can use roles with triggers. Role-related statements (CREATE ROLE,
DROP ROLE, and SET ROLE) can be triggered inside a trigger. Privileges that
a user has acquired through enabling a role are not relinquished when a
trigger is executed.
SQL Enhancements 3-35

CREATE TRIGGER
References
For further information about roles, see the CREATE ROLE, DROP ROLE,
GRANT, REVOKE, and SET ROLE statements in this guide.
3-36 Guide to 7.1 Feature Enhancements

DATABASE
DATABASE
The DATABASE statement is changed in this release. The DATABASE
statement is fully described in the Informix Guide to SQL: Syntax.

The user who executes the DATABASE statement cannot have the same user
name as an existing role in the database.

The current user, or PUBLIC, must have the Connect database privilege for
the database that is specified in the DATABASE statement.
SQL Enhancements 3-37

DROP ROLE
DROP ROLE
Use the DROP ROLE statement to remove a previously created role.

Syntax

Usage
The DROP ROLE statement is used to remove an existing role. Either the DBA
or a user granted the role with the WITH GRANT OPTION can issue the DROP
ROLE statement.

After a role is dropped, the privileges associated with that role, such as table-
level privileges or fragment-level privileges, are dropped and a user cannot
grant or enable a role. If a user is using the privileges of a role when the role
is dropped, the user automatically loses those privileges.

A role exists until either the DBA or a user granted the role with the WITH
GRANT OPTION uses the DROP ROLE statement to drop the role.

The following statement drops the role engineer:

DROP ROLE engineer

References
See the CREATE ROLE, GRANT, REVOKE, and SET ROLE statements in this
guide.

See the GRANT and REVOKE statements in Informix Guide to SQL: Syntax.

Element Purpose Restrictions Syntax

role name Name of the role being dropped The role name must have been
created with the CREATE ROLE
statement

Identifier, Informix
Guide to SQL:
Syntax

DROP ROLE role name
OL

+

3-38 Guide to 7.1 Feature Enhancements

DROP TABLE
DROP TABLE
The behavior of the DROP TABLE statement is changed in this release.

Effect of CASCADE and RESTRICT Keywords
The behavior of the CASCADE and RESTRICT keywords has changed.

If you drop a base table in the cascade mode, any associated violations and
diagnostics tables are also dropped. For example, if the table named
customer has a violations table named customer_vio and a diagnostics table
named customer_dia, the following statement causes the customer,
customer_vio, and customer_dia tables to be dropped:

DROP TABLE customer CASCADE

If you drop a base table in the restricted mode, and a violations and diagnos-
tics table exist for the base table, your DROP TABLE statement fails. For exam-
ple, if the table named items has a violations table named items_vio and a
diagnostics table named items_dia, the following statement fails:

DROP TABLE items RESTRICT

By default, the DROP TABLE statement executes in cascade mode. So a DROP
TABLE statement without the CASCADE or RESTRICT keywords causes the
violations and diagnostics tables (if any) to be dropped with the specified
base table. For example, if the table named orders has a violations table
named orders_vio and a diagnostics table named orders_dia, the following
statement causes all three tables to be dropped:

DROP TABLE orders

Restriction on Dropping Violations and Diagnostics Tables
You cannot drop a table that is serving as a violations or diagnostics table for
a base table. Before you can drop a violations or diagnostics table, you must
issue a STOP VIOLATIONS TABLE statement on the base table. Because the
STOP VIOLATIONS TABLE statement drops the association between the base
table and its violations and diagnostics tables, the former violations and
diagnostics tables no longer function as violations and diagnostics tables.
You can now use the DROP TABLE statement to drop the former violations
and diagnostics tables.
SQL Enhancements 3-39

DROP TABLE
For example, if the table named customer has a violations table named
customer_vio and a diagnostics table named customer_dia, the following
DROP TABLE statements on the violations and diagnostics tables fails:

DROP TABLE customer_vio;
DROP TABLE customer_dia;

However, if you first issue a STOP VIOLATIONS TABLE statement on the
customer table, you are able to drop its former violations and diagnostics
tables successfully. The following example shows the correct sequence of
steps for dropping the violations and diagnostics tables for the customer
table:

STOP VIOLATIONS TABLE FOR customer;
DROP TABLE customer_vio;
DROP TABLE customer_dia;
3-40 Guide to 7.1 Feature Enhancements

GET DIAGNOSTICS
GET DIAGNOSTICS
The EXCEPTION clause of the GET DIAGNOSTICS statement retrieves the
values of SQLSTATE codes from the SQLSTATE variable. A new SQLSTATE
code has been added in this release, and GET DIAGNOSTICS statements with
the EXCEPTION clause can retrieve this code. The new SQLSTATE code is as
follows:

01007 Privilege not granted

This new warning code is returned to the SQLSTATE variable when a GRANT
statement with the ALL keyword executes successfully but does not grant all
seven table-level privileges to the grantee.

For example, assume that the user ted has the Select and Insert privileges on
the customer table, together with the authority to grant those privileges to
other users. User ted wants to grant all seven table-level privileges to a user
named tania. User ted issues the following GRANT statement:

GRANT ALL ON customer TO tania

This statement executes successfully but returns SQLSTATE code 01007 to the
SQLSTATE variable because only the Select and Insert privileges were granted
to user tania. This statement did not grant the other five table-level privileges
implied by the ALL keyword (the Delete, Update, References, Index, and
Alter privileges) to user tania.
SQL Enhancements 3-41

GRANT
GRANT
The GRANT statement contains a number of changes in this release.

Use the GRANT statement to grant privileges for a table, database, procedure,
or a role. The GRANT statement is fully described in the Informix Guide to SQL:
Syntax.

If you are granting the Alter table-level privilege with the intent of allowing
a user to make changes to a table, you must also grant the Resource database
privilege for the database in which the table resides.
3-42 Guide to 7.1 Feature Enhancements

GRANT
Syntax

+

View
Name

see SQLS

Table-
Level

Privileges
see SQLS

Synonym
Name

see SQLS

Procedure
Name

see SQLS

,

,

user

PUBLIC
Database-

Level
 Privileges
see SQLS

GRANT

' user '

user

TO

TO PUBLICON

ONEXECUTE

+

Table
Name

see SQLS

WITH GRANT OPTION AS grantor

+

+

,

user

PUBLICTO
+

role name

' user '

role
name
' role

name'

WITH
GRANT
OPTION

OL
' user '
SQL Enhancements 3-43

GRANT
Element Purpose Restrictions Syntax
grantor The name of the person who is to

be listed as the source of the
specified privilege in the
systabauth or sysroleauth sys-
tem catalog table. The person
who issues the GRANT statement
is the default grantor of the
privilege.

If you specify someone else as
the grantor of the specified priv-
ilege to user, you cannot later
revoke that privilege from user.

Identifier segment,
Informix Guide to
SQL: Syntax

role name The name of the role granted. The role must have been created
with the CREATE ROLE
statement.

CREATE ROLE,
p. 3-26
Identifier segment,
Informix Guide to
SQL: Syntax

user The name of the user who
receives the specified privilege.

If you use quotes around user,
the name of the user is stored
exactly as you typed it. In an
ANSI-compliant database, the
name of the user is stored as
uppercase letters if you do not
use quotes around user. If you
grant a privilege to PUBLIC, you
do not need to grant the
privilege to individual users
because PUBLIC extends the
privilege to all authorized users.
Also see “Restricting Privileges
at the Table Level” in the GRANT
statement in the Informix Guide
to SQL: Syntax.

Identifier segment,
Informix Guide to
SQL: Syntax
3-44 Guide to 7.1 Feature Enhancements

GRANT
Granting Privileges to Roles
The GRANT statement is extended to grant a role to another role or user. You
can only grant roles that have been created with the CREATE ROLE statement.
After a role is granted, you must use the SET ROLE statement to enable the
role. Users who have been granted a role with the WITH GRANT OPTION can
grant that role to other users or roles. Roles granted to users remain granted
until cancelled by a REVOKE statement.

Table-level privileges and the Execute privilege to stored procedures can be
granted to roles. Database-level privileges cannot be granted to roles.

The DBA or a user granted the role with the WITH GRANT OPTION can grant
a role to a user. A role cannot be granted to itself, either directly or indirectly.
The following statement causes an error:

GRANT engineer TO engineer

When you grant a role to a role, both roles must have been created with the
CREATE ROLE statement and both roles must have the same set of privileges.
The following example generates an error because the engineer role only has
the Select privilege, but the acct role has the Insert privilege:

GRANT engineer TO acct
GRANT acct TO mfg
GRANT engineer TO mfg

The following example grants the user maryf the role engineer:

GRANT engineer TO maryf

The following example grants the role acct to the role engineer:

GRANT acct TO engineer

The following example grants the table-level privilege Insert on table1 to the
role engineer:

GRANT INSERT ON table1 TO engineer

The following example grants the user maryf the role engineer with the
WITH GRANT OPTION. This privilege allows maryf to grant the role to other
users or roles.

GRANT engineer TO maryf WITH GRANT OPTION
SQL Enhancements 3-45

GRANT
ALL Keyword in Table-Level Privileges
The behavior of the ALL keyword has changed. Formerly a GRANT statement
with the ALL keyword failed if any of the seven table-level privileges did not
exist for the grantor. Now, if any or all of the seven table-level privileges do
not exist for the grantor, the GRANT statement with the ALL keyword suc-
ceeds, but the following SQLSTATE warning is returned:

01007 - Privilege not granted.

For example, assume that the user ted has the Select and Insert privileges on
the customer table with the authority to grant those privileges to other users.
User ted wants to grant all seven table-level privileges to user tania. So user
ted issues the following GRANT statement:

GRANT ALL ON customer TO tania

This statement executes successfully but returns SQLSTATE code 01007. Why
is the SQLSTATE warning returned if the statement is successful?

■ The statement succeeds in granting the Select and Insert privileges to
user tania because user ted has those privileges and the right to grant
those privileges to other users.

■ SQLSTATE code 01007 is returned because the other five privileges
implied by the ALL keyword (the Delete, Update, References, Index,
and Alter privileges) were not grantable by user ted and, therefore,
were not granted to user tania.

ALTER Keyword in Table-Level Privileges
The meaning of the ALTER keyword has changed in this release. The Alter
privilege corresponding to this keyword now includes the right to change the
object mode of database objects. If a user has the Alter privilege, the user can
set the object mode of unique indexes and constraints to the enabled,
disabled, or filtering mode. In addition, a user with this privilege can set the
object mode of nonunique indexes and triggers to the enabled or disabled
mode.
3-46 Guide to 7.1 Feature Enhancements

GRANT
We can state the complete behavior of the Alter privilege as follows:

The second and third sentences in this description (highlighted by italics)
describe the new behavior of the ALTER keyword in this release. The first
sentence in this description describes behavior that is unchanged in this
release.

References
See the CREATE ROLE, DROP ROLE, REVOKE, and SET ROLE statements in this
guide and the GRANT and REVOKE statements in the Informix Guide to SQL:
Syntax. See the discussion of privileges and security in the Informix Guide to
SQL: Tutorial.

ALTER The Alter privilege provides the ability to add or delete col-
umns, modify column data types, or add or delete constraints.
This privilege also provides the ability to set the object mode of
unique indexes and constraints to the enabled, disabled, or filtering
mode. In addition, this privilege provides the ability to set the object
mode of nonunique indexes and triggers to the enabled or disabled
modes.
SQL Enhancements 3-47

GRANT FRAGMENT
GRANT FRAGMENT
The GRANT FRAGMENT statement enables you to grant Insert, Update, and
Delete privileges on individual fragments of a fragmented table.

Syntax

ON
GRANT

FRAGMENT
Fragment-Level

Privileges
p. 3-51

+

OL

dbspace()tablename

,

user

,

'user '

TO

WITH GRANT
OPTION

AS grantor
3-48 Guide to 7.1 Feature Enhancements

GRANT FRAGMENT
Usage
Use the GRANT FRAGMENT statement to grant the Insert, Update, or Delete
privilege on one or more fragments of a fragmented table to one or more
users.

The GRANT FRAGMENT statement is valid only for tables fragmented
according to an expression-based distribution scheme. For an explanation of
expression-based distribution schemes, see the ALTER FRAGMENT statement
in the Informix Guide to SQL: Syntax.

Element Purpose Restrictions Syntax

dbspace The name of the dbspace where
the fragment is stored. Use this
parameter to specify the
fragment or fragments on which
privileges are to be granted.
There is no default value.

You must specify at least one db-
space. The specified dbspaces
must exist.

Identifier
segment,Informix
Guide to SQL: Syn-
tax

grantor The name of the user who is to
be listed as the grantor of the
specified privileges in the
grantor column of the
sysfragauth system catalog
table. The user who issues the
GRANT FRAGMENT statement is
the default grantor of the
privileges.

The user specified in grantor
must be a valid user.

Identifier segment,
Informix Guide to
SQL: Syntax

tablename The name of the table that
contains the fragment or
fragments on which privileges
are to be granted. There is no
default value.

The specified table must exist
and must be fragmented by
expression.

Table Name seg-
ment, Informix
Guide to SQL: Syn-
tax

user The name of the user or users to
whom the specified privileges
are to be granted. There is no
default value.

If you use quotes around user,
the name of the user is stored ex-
actly as you typed it. In an ANSI-
compliant database, the name of
the user is stored as uppercase
letters if you do not use quotes
around user.

Identifier segment,
Informix Guide to
SQL: Syntax
SQL Enhancements 3-49

GRANT FRAGMENT
Relationship Between the GRANT and GRANT FRAGMENT Statements

The GRANT FRAGMENT statement is similar to the GRANT statement. Both
statements grant privileges to users. The difference between the two state-
ments is that you use GRANT to grant privileges on a table while you use
GRANT FRAGMENT to grant privileges on one or more fragments of a table.

Granting Privileges on One Fragment or a List of Fragments

You can grant fragment-level privileges on one fragment of a table or on a list
of fragments.

Granting Privileges on One Fragment

The following statement grants the Insert, Update, and Delete privileges on
the fragment of the customer table in dbsp1 to the user larry:

GRANT FRAGMENT ALL ON customer (dbsp1) TO larry

Granting Privileges on More Than One Fragment

The following statement grants the Insert, Update, and Delete privileges on
the fragments of the customer table in dbsp1 and dbsp2 to the user millie:

GRANT FRAGMENT ALL ON customer (dbsp1, dbsp2) TO millie

Granting Privileges on All Fragments of a Table

If you want to grant privileges on all fragments of a table to the same user or
users, you can use the GRANT statement instead of the GRANT FRAGMENT
statement. However, you can also use the GRANT FRAGMENT statement for
this purpose.

Assume that the customer table is fragmented by expression into three
fragments, and these fragments reside in the dbspaces named dbsp1, dbsp2,
and dbsp3. You can use either of the following statements to grant the Insert
privilege on all fragments of the table to the user helen:

GRANT FRAGMENT INSERT ON customer (dbsp1, dbsp2, dbsp3)
TO helen;

GRANT INSERT ON customer TO helen;
3-50 Guide to 7.1 Feature Enhancements

GRANT FRAGMENT
Granting Privileges to One User or a List of Users

You can grant fragment-level privileges to a single user or to a list of users.

Granting Privileges to One User

The following statement grants the Insert, Update, and Delete privileges on
the fragment of the customer table in dbsp3 to the user oswald:

GRANT FRAGMENT ALL ON customer (dbsp3) TO oswald

Granting Privileges to a List of Users

The following statement grants the Insert, Update, and Delete privileges on
the fragment of the customer table in dbsp3 to the users jerome and hilda:

GRANT FRAGMENT ALL ON customer (dbsp3) TO jerome, hilda

Fragment-Level Privileges

The following list defines each of the fragment-level privileges:

ALL

INSERT

UPDATE

,

DELETE

Fragment-Level
Privileges

ALL Grants Insert, Update, and Delete privileges on a table fragment.
INSERT Grants Insert privilege on a table fragment. This privilege gives

the user the ability to insert rows in the fragment.
DELETE Grants Delete privilege on a table fragment. This privilege gives

the user the ability to delete rows in the fragment.
UPDATE Grants Update privilege on a table fragment. This privilege gives

the user the ability to update rows in the fragment and to name
any column of the table in an UPDATE statement.
SQL Enhancements 3-51

GRANT FRAGMENT
Definition of Fragment-Level Authority

When a fragmented table is created in an ANSI-compliant database, the table
owner implicitly receives all table-level privileges on the new table, but no
other users receive privileges.

When a fragmented table is created in a database that is not ANSI-compliant,
the table owner implicitly receives all table-level privileges on the new table,
and other users (that is, PUBLIC) receive the following default set of privi-
leges on the table: Select, Update, Insert, Delete, and Index. The privileges
granted to PUBLIC are explicitly recorded in the systabauth system catalog
table.

A user who has table privileges on a fragmented table has the privileges
implicitly on all fragments of the table. These privileges are not recorded in
the sysfragauth system catalog table.

Whether or not the database is ANSI-compliant, you can use the GRANT
FRAGMENT statement to grant explicit Insert, Update, and Delete privileges
on one or more fragments of a table that is fragmented by expression. The
privileges granted by the GRANT FRAGMENT statement are explicitly
recorded in the sysfragauth system catalog table.

The Insert, Update, and Delete privileges that are conferred on table
fragments by the GRANT FRAGMENT statement are collectively known as
fragment-level privileges or fragment-level authority.
3-52 Guide to 7.1 Feature Enhancements

GRANT FRAGMENT
Role of Fragment-Level Authority in Command Validation

Fragment-level authority lets users execute INSERT, DELETE, and UPDATE
statements on table fragments even if they lack Insert, Update, and Delete
privileges on the table as a whole. Users who lack privileges at the table level
can insert, delete, and update rows in authorized fragments because of the
algorithm by which OnLine validates commands. This algorithm consists of
the following checks:

1. When a user executes an INSERT, DELETE, or UPDATE statement, the
database server first checks whether the user has the table authority
necessary for the operation attempted. If the table authority exists,
the command continues processing.

2. If the table authority does not exist, the database server checks
whether the table is fragmented by expression. If the table is not frag-
mented by expression, the database server returns an error to the
user. This error indicates that the user does not have the privilege to
execute the command.

3. If the table is fragmented by expression, the database server checks
whether the user has the fragment authority necessary for the oper-
ation attempted. If the fragment authority exists, the command con-
tinues processing. If the fragment authority does not exist, the
database server returns an error to the user. This error indicates that
the user does not have the privilege to execute the command.

Duration of Fragment-Level Authority

The duration of fragment-level authority is tied to the duration of the
fragmentation strategy for the table as a whole.

If you drop a fragmentation strategy by means of a DROP TABLE statement or
by means of the INIT, DROP, or DETACH clauses of an ALTER FRAGMENT
statement, you also drop any authorities that exist for the affected fragments.
Similarly, if you drop a dbspace, you also drop any authorities that exist for
the fragment that resides in that dbspace.

Tables that are created as a result of a DETACH or INIT clause of an ALTER
FRAGMENT statement do not keep the authorities that the former fragment
or fragments had when they were part of the fragmented table. Instead such
tables assume the default table authorities.
SQL Enhancements 3-53

GRANT FRAGMENT
If a table with fragment authorities defined on it is changed to a table with a
round-robin strategy or some other expression strategy, the fragment
authorities are also dropped, and the table assumes the default table
authorities.

Granting One Privilege, a List of Privileges, or All Privileges

When you specify fragment-level privileges in a GRANT FRAGMENT
statement, you can specify one privilege, a list of privileges, or all privileges.

Granting One Privilege

The following statement grants the Update privilege on the fragment of the
customer table in dbsp1 to the user ed:

GRANT FRAGMENT UPDATE ON customer (dbsp1) TO ed

Granting a List of Privileges

The following statement grants the Update and Insert privileges on the
fragment of the customer table in dbsp1 to the user susan:

GRANT FRAGMENT UPDATE, INSERT ON customer (dbsp1) TO susan

Granting All Privileges

The following statement grants the Insert, Update, and Delete privileges on
the fragment of the customer table in dbsp1 to the user harry:

GRANT FRAGMENT ALL ON customer (dbsp1) TO harry
3-54 Guide to 7.1 Feature Enhancements

GRANT FRAGMENT
WITH GRANT OPTION Clause
By including the WITH GRANT OPTION clause in the GRANT FRAGMENT
statement, you convey the specified fragment-level privileges to a user and
the right to grant those same privileges to other users.

The following statement grants the Update privilege on the fragment of the
customer table in dbsp3 to the user george, and gives this user the right to
grant the Update privilege on the same fragment to other users:

GRANT FRAGMENT UPDATE ON customer (dbsp3) TO george
WITH GRANT OPTION

AS grantor Clause
The AS grantor clause is optional in a GRANT FRAGMENT statement. Use this
clause to specify the grantor of the privilege.

Including the AS grantor Clause

When you include the AS grantor clause in the GRANT FRAGMENT statement,
you specify that the user named in the grantor parameter is listed as the
grantor of the privilege in the grantor column of the sysfragauth system
catalog table.

In the following example, the user brenda grants the Delete privilege on the
fragment of the customer table in dbsp3 to the user martha. In her GRANT
FRAGMENT statement, the user brenda uses the AS grantor clause to specify
that the user jack is listed as the grantor of the privilege in the sysfragauth
system catalog table:

GRANT FRAGMENT DELETE ON customer (dbsp3) TO martha AS jack
SQL Enhancements 3-55

GRANT FRAGMENT
Omitting the AS grantor Clause

When a GRANT FRAGMENT statement does not include the AS grantor clause,
the user who issues the statement is the default grantor of the privileges
specified in the statement.

In the following example, the user brenda grants the Update privilege on the
fragment of the customer table in dbsp3 to the user fred. Because this
statement does not specify the AS grantor clause, the user brenda is listed by
default as the grantor of the privilege in the sysfragauth system catalog table:

GRANT FRAGMENT UPDATE ON customer (dbsp3) TO fred

Consequences of the AS grantor Clause

If you omit the AS grantor clause, or if you specify your own user name in the
grantor parameter, you can later revoke the privilege that you granted to the
specified user. However, if you specify someone other than yourself as the
grantor of the specified privilege to the specified user, you cannot later
revoke that privilege from that user.

References
See the GRANT and REVOKE FRAGMENT statements in this guide.

See the GRANT statement in the Informix Guide to SQL: Syntax.
3-56 Guide to 7.1 Feature Enhancements

RENAME DATABASE
RENAME DATABASE
Use the RENAME DATABASE statement to change the name of a database.

Syntax

Usage
You can rename a database if either of the following statements is true:

■ You created the database.

■ You have the DBA privilege on the database.

You can only rename local databases. You can rename a local database from
inside a stored procedure.

References
See the CREATE DATABASE statement in the Informix Guide to SQL: Syntax.

Element Purpose Restrictions Syntax
new database
name

The new name that you want to
assign to the database

Name must be unique. You can-
not rename the current database.
The database to be renamed
must not be opened by any users
when the RENAME DATABASE
command is issued.

Database Name
segment, Identifier
segment, Informix
Guide to SQL: Syn-
tax

old database
name

The name of the database you
want to rename

The database name must exist. Database Name
segment, Identifier
segment, Informix
Guide to SQL: Syn-
tax

TORENAME DATABASE new database name
OL

+
old database name
SQL Enhancements 3-57

REVOKE
REVOKE
The REVOKE statement is changed in this release. The entire REVOKE
statement is presented here.

Use the REVOKE statement to remove another user’s privileges for a table,
database, procedure, or role. You can also use the REVOKE statement to
revoke a role from another user.
3-58 Guide to 7.1 Feature Enhancements

REVOKE
Syntax

Procedure
 Name

See SQLS

,

user

'user '

REVOKE FROM PUBLIC

EXECUTE ON

+

Database-
Level

Privileges
See SQLS

,

user

'user '

ON FROM PUBLIC
Table-Level
Privileges
See SQLS

CASCADE

RESTRICT

OL

role
name

'

role name

OL

role
name

'

OL

table name

view name

synonym
name

,

user

'user '

FROM PUBLIC

ON
Table-Level
Privileges
See SQLS

table name

view name

synonym
name
SQL Enhancements 3-59

REVOKE
Usage
You can use the REVOKE statement with the GRANT statement to finely
control the ability of users to modify the database as well as access and
modify data in the tables.

If you use the PUBLIC keyword after the FROM keyword, the REVOKE
statement revokes privileges from all users.

You can revoke all or some of the privileges that you granted to other users.
No one can revoke privileges granted by another user.

If you revoke the EXECUTE privilege on a stored procedure from a user, that
user can no longer run that procedure using either the EXECUTE PROCEDURE
or CALL statements.

If you use quotes, user appears exactly as typed.

Users cannot revoke privileges from themselves.

Element Purpose Restriction Syntax
role name Names the role whose privilege

is being revoked or names the
role being revoked from a user
or role.

The role must have been created
with the CREATE ROLE statement
and granted with the GRANT
statement.

CREATE ROLE,
p. 3-26
Identifier segment,
Informix Guide to
SQL: Syntax

synonym name The synonym name being
revoked

Must be an existing synonym
name.

Synonym Name seg-
ment, Informix
Guide to SQL: Syn-
tax

table name The table name being revoked Must be an existing table name. Table Name seg-
ment, Informix
Guide to SQL: Syn-
tax

user Names the user or role whose
privileges are revoked

Must be a valid user or role. Identifier segment,
Informix Guide to
SQL: Syntax

view name The view name being revoked Must be an existing view name. View Name segment,
Informix Guide to
SQL: Syntax
3-60 Guide to 7.1 Feature Enhancements

REVOKE
Using the REVOKE Statement with Roles

You can use the REVOKE statement to remove privileges from a role and
remove a role from a user or another role. Once a role is revoked from a user,
the user cannot enable that role. You can revoke all or some of the roles
granted to a user or role. If a role is revoked from a user who granted the role
to other users, the role is also revoked from the subsequent users.

You can use the REVOKE statement to revoke table-level privileges from a
role; however, you cannot use the RESTRICT clause when you do so.

Only the DBA or a user granted a role with the WITH GRANT OPTION can
revoke privileges for a role.

If you revoke the Execute privilege on a stored procedure from a role, that
role can no longer run that procedure.

Users cannot revoke roles from themselves. When you revoke a role, you
cannot revoke the WITH GRANT OPTION separately. If the role was granted
with the WITH GRANT OPTION, both the role and grant option are revoked.

The following example revokes the engineer role from the user maryf:

REVOKE engineer FROM maryf

Revoking Privileges Granted from WITH GRANT OPTION

If you revoke from user the privileges that you granted using the WITH
GRANT OPTION keywords, you sever the chain of privileges granted by that
user. In this case, when you revoke privileges from user, you automatically
revoke the privileges of all users who received privileges from user or from
the chain that user created. You can also specify this default condition with
the CASCADE keyword.

REVOKE and ROLLBACK WORK

You cannot use a ROLLBACK WORK statement to undo a REVOKE statement
that successfully executes. If you roll back a transaction that contains a
REVOKE statement, the privilege is not granted again to the user and you do
not receive an error message. ✦

SE
SQL Enhancements 3-61

REVOKE
Table-Level Privileges

To revoke a table-level privilege from a user, you must revoke all occurrences
of the privilege. For example, if two users grant the same privilege to a user,
both of them must revoke the privilege. If one grantor revokes the privilege,
the user retains the privilege received from the other grantor. (The database
server keeps a record of each table-level grant in the syscolauth and
systabauth system catalog tables.)

If a table owner grants a privilege to PUBLIC, the owner cannot revoke the
same privilege from any particular user. For example, if the table owner
grants the Select privilege to PUBLIC and then attempts to revoke the Select
privilege from mary, the REVOKE statement generates an error. The Select
privilege was granted to PUBLIC, not to mary, and therefore the privilege
cannot be revoked from mary. (ISAM error number 111, No record found,
refers to the lack of a record in either the syscolauth or systabauth system
catalog table, which would represent the grant that the table owner now
wants to revoke.)

ALL

PRIVILEGES

SELECT

UPDATE

INSERT

DELETE

INDEX

ALTER

,

REFERENCES

Table-Level
Privileges
3-62 Guide to 7.1 Feature Enhancements

REVOKE
You can revoke table-level privileges individually or in combination. List the
keywords that correspond to the privileges that you are revoking from user.
The keywords are described in the following list. Unlike the GRANT state-
ment, the REVOKE statement does not allow you to qualify the Select,
Update, or References privilege with a column name. Thus you cannot
revoke access on specific columns.

The following example revokes the Index and Alter privileges from all users
for the customer table; these privileges are then granted specifically to user
mary.

REVOKE INDEX, ALTER ON customer FROM PUBLIC;
GRANT INDEX, ALTER ON customer TO mary;

INSERT provides the ability to insert rows.
DELETE provides the ability to delete rows.
SELECT provides the ability to display data obtained from a

SELECT statement.
UPDATE provides the ability to change column values.
INDEX provides the ability to create permanent indexes. You

must have the Resource privilege to take advantage of
the Index privilege. (Any user with the Connect
privilege can create indexes on temporary tables.)

ALTER provides the ability to modify column data types or to
add or delete columns.

REFERENCES provides the ability to reference columns in referential
constraints. You must have the Resource privilege to
take advantage of the References privilege. (However,
you can add a referential constraint during an ALTER
TABLE statement. This method does not require that
you have the Resource privilege on the database.)
Revoke the References privilege to disallow cascading
deletes.

ALL provides all the preceding privileges. The PRIVILEGES
keyword is optional.
SQL Enhancements 3-63

REVOKE
Because you cannot revoke access on specific columns, when you revoke the
Select, Update, or References privilege from a user, you revoke the privilege
for all columns in the table. You must use a GRANT statement to specifically
regrant any column-specific privilege that should be available to the user, as
shown in the following example:

REVOKE ALL ON customer FROM PUBLIC;
GRANT ALL ON customer TO john, cathy;
GRANT SELECT (fname, lname, company, city)

ON customer TO PUBLIC;

ALL Keyword in Table-Level Privileges

The behavior of the ALL keyword has changed. Formerly a REVOKE state-
ment with the ALL keyword returned the following SQLSTATE code if any or
all of the seven table-level privileges did not exist for the revokee:

00000 - Success

Now, if any or all of the seven table-level privileges do not exist for the revo-
kee, the REVOKE statement with the ALL keyword returns the following
SQLSTATE code:

01006 - Privilege not revoked

For example, assume that the user hal has the Select and Insert privileges on
the customer table. User jocelyn wants to revoke all seven table-level privi-
leges from user hal. So user jocelyn issues the following REVOKE statement:

REVOKE ALL ON customer FROM hal

This statement executes successfully but returns SQLSTATE code 01006.Why
is the SQLSTATE warning returned if the statement is successful?

■ The statement succeeds in revoking the Select and Insert privileges
from user hal because user hal had those privileges.

■ SQLSTATE code 01006 is returned because the other five privileges
implied by the ALL keyword (the Delete, Update, References, Index,
and Alter privileges) did not exist for user hal; therefore, these privi-
leges were not revoked.
3-64 Guide to 7.1 Feature Enhancements

REVOKE
ALTER Keyword in Table-Level Privileges

The individual table-level privileges that you can grant with the GRANT
statement are exactly the same as the table-level privileges that you can
revoke with the REVOKE statement. The table-level privileges in both state-
ments are the Insert, Delete, Select, Update, References, Index, and Alter
privileges. When the behavior of one of these privileges changes in the
GRANT statement, the behavior of the same privilege changes correspond-
ingly in the REVOKE statement.

In this release the meaning of the Alter privilege in the GRANT statement has
changed, so the meaning of the Alter privilege in the REVOKE statement has
changed accordingly.

In the GRANT statement, the ALTER keyword that corresponds to the Alter
privilege now confers the right to change the object mode of database objects.
If a user has the Alter privilege, the user can set the object mode of unique
indexes and constraints to the enabled, disabled, or filtering mode. In
addition, a user with this privilege can set the object mode of non-unique
indexes and triggers to the enabled or disabled modes.

By the same token, the ALTER keyword in the REVOKE statement now takes
away the right to change the object mode of database objects. If the Alter
privilege is revoked from a user, that user can no longer set the object mode
of unique indexes and constraints to the enabled, disabled, or filtering mode.
In addition, that user can no longer set the object mode of non-unique
indexes and triggers to the enabled or disabled modes.

We can state the complete behavior of the ALTER keyword in the REVOKE
statement as follows:

The italicized text in the preceding description highlights the new behavior
of the ALTER keyword in this release.

ALTER This keyword causes the Alter privilege to be revoked. The
Alter privilege provides the ability to add or delete columns,
modify column data types, or add or delete constraints. This
privilege also provides the ability to set the object mode of unique
indexes and constraints to the enabled, disabled, or filtering mode. In
addition, this privilege provides the ability to set the object mode of
non-unique indexes and triggers to the enabled or disabled modes.
SQL Enhancements 3-65

REVOKE
RESTRICT Clause
The behavior of the RESTRICT clause has changed. Formerly a REVOKE
statement with the RESTRICT keyword failed if the revokee had the right to
grant this privilege to other users, whether or not the revokee had actually
granted the privilege to any other user. Now a REVOKE statement with the
RESTRICT keyword succeeds if the revokee has the right to grant this
privilege to other users but has not actually granted this privilege to any
other user.

We can illustrate the new behavior of the RESTRICT keyword by means of the
following examples.

Assume that the user clara has granted the Select privilege on the customer
table to the user ted, and she has also granted user ted the right to grant the
Select privilege to other users. User ted has used this authority to grant the
Select privilege on the customer table to the user named tania. Now user
clara attempts to revoke the Select privilege from user ted with the following
REVOKE statement:

REVOKE SELECT ON customer FROM ted RESTRICT

This statement fails because user ted has granted the Select privilege to user
tania.

What if the revokee has the right to grant the privilege to other users but has
not actually granted this privilege to any other user? For example, assume
that the user clara has granted the Select privilege on the customer table to
the user roger, and she has also granted user roger the right to grant the Select
privilege to other users. However, user roger has not used this authority to
granted the Select privilege to any other user. Now user clara attempts to
revoke the Select privilege from user roger with the following REVOKE
statement:

REVOKE SELECT ON customer FROM roger RESTRICT

This statement succeeds because user roger has not granted the Select
privilege to any other user.
3-66 Guide to 7.1 Feature Enhancements

REVOKE
We can summarize the effects of the RESTRICT clause in the current release by
means of a simple list of conditions. A REVOKE statement that includes the
RESTRICT clause fails if any of the following conditions are true:

■ The user from whom the privilege is to be revoked has granted this privilege
to another user or users.

■ A view depends on a Select privilege that is being revoked.

■ A foreign-key constraint depends on a References privilege that is
being revoked.

The first condition in this list (in italic type) is the only condition that is new
in this release. The other two conditions in the list remain unchanged.

Revoking Table-Level Privileges from a User
In an ANSI-compliant database, if you do not use quotes around user, the
name of the user is stored in uppercase letters. ✦

Database-Level Privileges

Only a user with the DBA privilege can grant or revoke database-level
privileges.

Three levels of database privileges control access. These privilege levels are,
from lowest to highest, Connect, Resource, and DBA. To revoke a database
privilege, specify one of the keywords CONNECT, RESOURCE, or DBA in the
REVOKE statement.

ANSI

CONNECT

RESOURCE

DBA

Database-Level
Privileges
SQL Enhancements 3-67

REVOKE
Because of the hierarchical organization of the privileges (as outlined in the
privilege definitions described later in this section), if you revoke either the
Resource or the Connect privilege from a user with the DBA privilege, the
statement has no effect. If you revoke the DBA privilege from a user who has
the DBA privilege, the user retains the Connect privilege on the database. To
deny database access to a user with the DBA or Resource privilege, you must
first revoke the DBA or the Resource privilege and then revoke the Connect
privilege in a separate REVOKE statement.

Similarly, if you revoke the Connect privilege from a user with the Resource
privilege, the statement has no effect. If you revoke the Resource privilege
from a user, the user retains the Connect privilege on the database.

The database privileges are associated with the following keywords:

CONNECT gives you the ability to query and modify data. You can
modify the database schema if you own the object that you
want to modify. Any user with the Connect privilege can
perform the following functions:
■ Execute SELECT, INSERT, UPDATE, and DELETE

statements, provided that the user has the necessary
table-level privileges

■ Create views, provided that the user has the Select
privilege on the underlying tables

■ Create synonyms
■ Create temporary tables and create indexes on the

temporary tables
■ Alter or drop a table or an index, provided that the user

owns the table or index (or has the Alter, Index, or Refer-
ences privilege on the table)

■ Grant privileges on a table, provided that the user owns
the table (or has been given privileges on the table with
the WITH GRANT OPTION keyword)

RESOURCE gives you the ability to extend the structure of the database.
In addition to the capabilities of the Connect privilege, the
holder of the Resource privilege can perform the following
functions:
■ Create new tables
■ Create new indexes
■ Create new procedures
3-68 Guide to 7.1 Feature Enhancements

REVOKE
Warning: Although the user informix and DBAs can modify most system catalog
tables (only the user informix can modify systables), Informix strongly recom-
mends that you do not update, delete, or insert any rows in these tables. Modifying
the system catalog tables can destroy the integrity of the database. Informix does sup-
port use of the ALTER TABLE statement to modify the size of the next extent of system
catalog tables.

References
See the CREATE ROLE, DROP ROLE, GRANT, and SET ROLE statements in this
guide.

See the GRANT and REVOKE statements in the Informix Guide to SQL: Syntax.

See the discussion of privileges and security in the Informix Guide to SQL:
Tutorial.

DBA allows the holder of DBA privilege to perform the following
functions in addition to the capabilities of the Resource
privilege:
■ Grant any privilege, including the DBA privilege, to

another user
■ Use the NEXT SIZE keyword to alter extent sizes in the

system catalog tables
■ Drop any object, regardless of who owns it
■ Create tables, views, and indexes as well as specify

another user as owner of the objects
■ Execute the DROP DATABASE statement
■ Execute the START DATABASE, and

ROLLFORWARD DATABASE statements✦

■ Insert, delete, or update rows of any system catalog table
except systables

SE
SQL Enhancements 3-69

REVOKE FRAGMENT
REVOKE FRAGMENT
The REVOKE FRAGMENT statement enables you to revoke privileges that
have been granted on individual fragments of a fragmented table. You can
use this statement to revoke the Insert, Update, and Delete fragment-level
privileges from users.

Syntax

ON
REVOKE

FRAGMENT
Fragment-Level

Privileges
p. 3-72+

OL

FROM

dbspace()

tablename

,
user

,

'user '
3-70 Guide to 7.1 Feature Enhancements

REVOKE FRAGMENT
Usage
Use the REVOKE FRAGMENT statement to revoke the Insert, Update, or
Delete privilege on one or more fragments of a fragmented table from one or
more users.

The REVOKE FRAGMENT statement is only valid for tables that are
fragmented according to an expression-based distribution scheme. See the
ALTER FRAGMENT statement in the Informix Guide to SQL: Syntax for an
explanation of expression-based distribution schemes.

You can specify one fragment or a list of fragments in the REVOKE
FRAGMENT statement. You specify a fragment by naming the dbspace in
which the fragment resides.

You do not have to specify a particular fragment or a list of fragments in the
REVOKE FRAGMENT statement. If you do not specify any fragments in the
statement, the specified users lose the specified privileges on all fragments
for which the users currently have those privileges.

Element Purpose Restrictions Syntax

dbspace The name of the dbspace where
the fragment is stored. Use this
parameter to specify the
fragment or fragments on which
privileges are to be revoked. If
you do not specify a fragment,
the REVOKE statement applies to
all fragments in the specified
table that have the specified
privileges.

The specified dbspace or
dbspaces must exist.

Identifier
segment,Informix
Guide to SQL: Syn-
tax

tablename The name of the table that
contains the fragment or
fragments on which privileges
are to be revoked. There is no
default value.

The specified table must exist
and must be fragmented by
expression.

Table Name
segment, Informix
Guide to SQL: Syn-
tax

user The name of the user or users
from whom the specified
privileges are to be revoked.
There is no default value.

The user must be a valid user. Identifier segment,
Informix Guide to
SQL: Syntax
SQL Enhancements 3-71

REVOKE FRAGMENT
Fragment-Level Privileges

You can revoke fragment-level privileges individually or in combination. List
the keywords that correspond to the privileges that you are revoking from
user. The keywords are described in the following list:

If you specify the ALL keyword in a REVOKE FRAGMENT statement, the
specified users lose all fragment-level privileges that they currently have on
the specified fragments.

For example, assume that a user currently has the Update privilege on one
fragment of a table. If you use the ALL keyword to revoke all current privi-
leges on this fragment from this user, the user loses the Update privilege that
he or she had on this fragment.

ALL

INSERT

UPDATE

,

DELETE

Fragment-Level
Privileges

ALL Revokes all privileges currently granted on a table fragment.
INSERT Revokes Insert privilege on a table fragment. This privilege

gives the user the ability to insert rows in the fragment.
DELETE Revokes Delete privilege on a table fragment. This privilege

gives the user the ability to delete rows in the fragment.
UPDATE Revokes Update privilege on a table fragment. This privilege

gives the user the ability to update rows in the fragment and to
name any column of the table in an UPDATE statement.
3-72 Guide to 7.1 Feature Enhancements

REVOKE FRAGMENT
Examples of the REVOKE FRAGMENT Statement
The examples that follow are based on the customer table. All the examples
assume that the customer table is fragmented by expression into three
fragments that reside in the dbspaces named dbsp1, dbsp2, and dbsp3.

Revoking One Privilege

The following statement revokes the Update privilege on the fragment of the
customer table in dbsp1 from the user ed:

REVOKE FRAGMENT UPDATE ON customer (dbsp1) FROM ed

Revoking More Than One Privilege

The following statement revokes the Update and Insert privileges on the
fragment of the customer table in dbsp1 from the user susan:

REVOKE FRAGMENT UPDATE, INSERT ON customer (dbsp1) FROM susan

Revoking All Privileges

The following statement revokes all privileges currently granted to the user
harry on the fragment of the customer table in dbsp1.:

REVOKE FRAGMENT ALL ON customer (dbsp1) FROM harry

Revoking Privileges on More Than One Fragment

The following statement revokes all privileges currently granted to the user
millie on the fragments of the customer table in dbsp1 and dbsp2:

REVOKE FRAGMENT ALL ON customer (dbsp1, dbsp2) FROM millie

Revoking Privileges from More Than One User

The following statement revokes all privileges currently granted to the users
jerome and hilda on the fragment of the customer table in dbsp3:

REVOKE FRAGMENT ALL ON customer (dbsp3) FROM jerome, hilda
SQL Enhancements 3-73

REVOKE FRAGMENT
Revoking Privileges Without Specifying Fragments

The following statement revokes all current privileges from the user mel on
all fragments for which this user currently has privileges:

REVOKE FRAGMENT ALL ON customer FROM mel

References
See the REVOKE and GRANT FRAGMENT statements in this guide.
3-74 Guide to 7.1 Feature Enhancements

SELECT
SELECT
The SELECT statement is changed in this release. The AS keyword in the
SELECT clause is now treated as ANSI-compliant by the ANSI flagger.

SELECT Clause

As a result of modifications to the ANSI flagger used by Informix products,
the flagger now treats the optional AS keyword in the SELECT clause as
ANSI-compliant.

DISTINCT

UNIQUE

SELECT Select
List

Select
List

Synonym
Name

see SQLS

View
Name

see SQLS

Table
Name

see SQLS

ALL

Expression
see SQLS

AS

,

.

display
label

.

.

*

+

SQL Enhancements 3-75

SELECT
The following SELECT statement uses the AS keyword with a display label.
When you enter this statement in DB-Access or use it in an ESQL/C or
ESQL/COBOL program, you no longer receive an ANSI noncompliance
warning:

SELECT call_dtime AS time_of_call FROM cust_calls

For a complete explanation of the AS keyword and display labels, see the
SELECT statement in the Informix Guide to SQL: Syntax.

References
See the SELECT statement in the Informix Guide to SQL: Syntax for a complete
description of SELECT.
3-76 Guide to 7.1 Feature Enhancements

SET
SET
The SET statement allows you to change the object mode of the following
database objects: constraints, indexes, and triggers. You can also use the SET
statement to specify the transaction mode of constraints.

Syntax

Usage
The SET statement has the following purposes:

■ To change the object mode of constraints, indexes, and triggers.

When you change the object mode of constraints, indexes, or
triggers, the change is permanent. The setting produced by the SET
statement remains in effect until you change the object mode of the
object again.

■ To set the transaction mode of constraints by specifying whether
constraints are checked at the statement level or at the transaction
level.

When you set the transaction mode of constraints, the effect of the
SET statement is limited to the transaction in which it is executed.
The setting produced by the SET statement is only effective during
the transaction. For further information on setting the transaction
mode for constraints, see “Transaction-Mode Format” on page 3-101.

SET+
Table-Mode

Format
p. 3-79

List-Mode
Format
p. 3-84

Transaction-
Mode Format

p. 3-101

OL
SQL Enhancements 3-77

SET
Terminology for Object Modes

The SET statement operates on database objects by changing the object mode
of those objects. The terms database objects and objects have a restricted mean-
ing in the context of the SET statement. Both terms refer to the constraints,
indexes, and triggers in a database.

Similarly, the term object modes has a restricted meaning in the context of the
SET statement. The term refers to the three states that a database object can
have: enabled, disabled, and filtering. The sysobjstate system catalog table
lists all of the objects in the database and the current object mode of each
object.

Do not confuse the terms objects and object modes as used in the SET statement
with the term objects in INFORMIX-NewEra. In the context of
INFORMIX-NewEra, objects refers to objects within an application.

Methods for Changing Object Modes

The SET statement provides the following formats for changing object modes:
table mode and list mode. For an explanation of the table mode format, see
“Table-Mode Format” on page 3-79. For an explanation of the list mode
format, see “List-Mode Format” on page 3-84.

Privileges Required for Changing Object Modes
To change the object mode of a constraint, index, or trigger, you must have
the necessary privileges. Specifically, you must meet one of the following
requirements:

■ You must have the DBA privilege on the database.

■ You must be the owner of the table on which the object is defined and
must have the Resource privilege on the database.

■ You must have the Alter privilege on the table on which the object is
defined and the Resource privilege on the database.
3-78 Guide to 7.1 Feature Enhancements

SET
Table-Mode Format

Use the table-mode format to change the object mode of all objects of a given
type that have been defined on a particular table. For example, to change the
object mode of all constraints defined on the cust_subset table to the disabled
mode, enter the following statement:

SET CONSTRAINTS FOR cust_subset DISABLED

By using the table-mode format, you can change the object modes of more
than one object type with a single SET statement. For example, to change the
object mode of all constraints, indexes, and triggers defined on the
cust_subset table to the enabled mode, enter the following statement:

SET CONSTRAINTS, INDEXES, TRIGGERS FOR cust_subset
ENABLED

Element Purpose Restrictions Syntax

table name The name of the table whose
objects will have their object
mode changed. There is no
default value.

The table must be a local table.
You cannot set the object modes
of objects defined on a tempo-
rary table to the disabled or fil-
tering modes. For information
on the privileges required to
change the object mode of the
objects defined on a table, see
“Privileges Required for Chang-
ing Object Modes” on page 3-78.

Identifier segment,
Informix Guide to
SQL: Syntax

FOR

,

INDEXES

CONSTRAINTS

TRIGGERS

table name
Object Modes for
Constraints and
Unique Indexes

p. 3-80

Object Modes for
Triggers and

Duplicate Indexes
p. 3-83

Table-Mode Format
SQL Enhancements 3-79

SET
Object Modes for Constraints and Unique Indexes

You can specify the disabled, enabled, or filtering object modes for a
constraint or a unique index. You must specify one of these object modes in
your SET statement. There is no default object mode in the SET statement.

You can also specify the object mode for a constraint when you create the
constraint with the ALTER TABLE or CREATE TABLE statements. If you do not
specify the object mode for a constraint in one of these statements or in a SET
statement, the constraint is in the enabled object mode by default.

You can also specify the object mode for a unique index when you create the
index with the CREATE INDEX statement. If you do not specify the object
mode for a unique index in the CREATE INDEX statement or in a SET
statement, the unique index is in the enabled object mode by default.

For definitions of the disabled, enabled, and filtering object modes see “Using
Object Modes with Data Manipulation Statements” on page 3-86. For an
explanation of the benefits of these object modes, see “Benefits of Object
Modes” on page 3-98.

Object Modes for Constraints
and Unique Indexes

DISABLED

WITHOUT
ERROR

WITH
ERROR

FILTERING

ENABLED
3-80 Guide to 7.1 Feature Enhancements

SET
Error Options for Filtering Mode
When you change the object mode of a constraint or unique index to the
filtering mode, you can specify the following error options: WITHOUT ERROR
or WITH ERROR.

The WITHOUT ERROR Option

The WITHOUT ERROR option signifies that when the database server executes
an INSERT, DELETE, or UPDATE statement and one or more of the target rows
causes a constraint violation or unique-index violation, no integrity-violation
error message is returned to the user. The WITHOUT ERROR option is the
default error option.

The WITH ERROR Option

The WITH ERROR option signifies that when the database server executes an
INSERT, DELETE, or UPDATE statement and one or more of the target rows
causes a constraint violation or unique-index violation, an integrity-violation
error message is returned to the user.

Scope of Error Options

The WITH ERROR and WITHOUT ERROR options only apply when the
database server executes an INSERT, DELETE, or UPDATE statement and one
or more of the target rows causes a constraint violation or unique index
violation. These error options control whether the database server displays
an integrity-violation error message after it executes these statements.

These error options do not apply when you attempt to change the object
mode of a disabled constraint or disabled unique index to the enabled or
filtering mode and the SET statement fails because one or more rows in the
target table violates the constraint or the unique-index requirement. In these
cases, if a violations table has been started for the table that contains the
inconsistent data, the database server returns an integrity-violation error
message regardless of the error option specified in the SET statement.
SQL Enhancements 3-81

SET
Violations and Diagnostics Tables for Filtering Mode
When you specify the filtering mode for constraints or unique indexes in a
SET statement, violations and diagnostics tables are not automatically started
for the target table. When you set objects to the filtering mode, be sure to start
the violations and diagnostics tables for the target table on which the filtering
mode objects are defined. The violations table captures rows that fail to meet
integrity requirements. The diagnostics table captures information about
each row that fails to meet integrity requirements.

When to Start the Violations and Diagnostics Tables

You are not required to start the violations and diagnostics tables before you
set objects to the filtering mode. If you have not started a violations and
diagnostics table when you set an object to the filtering mode, the database
server executes your SET statement and does not return an error. Similarly, if
you issue an INSERT, DELETE, or UPDATE statement on the target table, and
you have not started a violations and diagnostics table for the target table, the
database server executes the statement and does not return an error as long
as all of the integrity requirements on the table are satisfied.

If you have not started a violations and diagnostics table for the target table
with filtering mode objects, the database server does not return an error until
an INSERT, DELETE, or UPDATE statement fails to satisfy an integrity
requirement on the table. If an INSERT, DELETE, or UPDATE statement fails to
satisfy the constraint or unique-index requirement for a particular row, the
database server cannot filter the bad row to the violations table because no
violations table is associated with the target table. The user receives an error
message indicating that no violations table has been started for the target
table.

To prevent such errors, start the violations and diagnostics tables for the
target table at one of the following points:

■ You can start the violations and diagnostics tables before you set any
objects defined on the table to the filtering mode.

■ You can start the violations and diagnostics tables after you set
objects to the filtering mode but before any users issue INSERT,
DELETE, or UPDATE statements that could violate any integrity
requirements on the target table.
3-82 Guide to 7.1 Feature Enhancements

SET
How to Start the Violations and Diagnostics Tables

To create the violations and diagnostics tables and associate them with the
target table, you use the START VIOLATIONS TABLE statement. In this
statement, you specify the name of the target table for which the violations
and diagnostics tables are to be started. You can also assign names to the
violations and diagnostics tables in this statement.

For further information on the START VIOLATIONS TABLE statement and the
structure of the violations and diagnostics tables themselves, see “START
VIOLATIONS TABLE” on page 3-109.

How to Stop the Violations and Diagnostics Tables

After you turn off filtering mode for the objects defined on a target table and
you no longer need the violations and diagnostics tables, you can use the
STOP VIOLATIONS TABLE statement to drop the association between the
target table and the violations and diagnostics tables. In this statement, you
specify the name of the target table whose association with the violations and
diagnostics tables is to be dropped.

For further information on the STOP VIOLATIONS TABLE statement, see
“STOP VIOLATIONS TABLE” on page 3-128.

Object Modes for Triggers and Duplicate Indexes

You can specify the disabled or enabled object modes for triggers or duplicate
indexes. You must specify one of these object modes in your SET statement.
There is no default object mode in the SET statement.

You can also specify the object mode for a trigger when you create the trigger
with the CREATE TRIGGER statement. If you do not specify the object mode
for a trigger in the CREATE TRIGGER statement or in a SET statement, the
trigger is in the enabled object mode by default.

DISABLED

ENABLED

Object Modes for Triggers
and Duplicate Indexes
SQL Enhancements 3-83

SET
You can also specify the object mode for a duplicate index when you create
the index with the CREATE INDEX statement. If you do not specify the object
mode for a duplicate index in the CREATE INDEX statement or in a SET
statement, the duplicate index is in the enabled object mode by default.

For definitions of the disabled and enabled object modes, see “Using Object
Modes with Data Manipulation Statements” on page 3-86. For an expla-
nation of the benefits of these two object modes, see “Benefits of Object
Modes” on page 3-98.

List-Mode Format

CONSTRAINTS

,

constraint
name

Object Modes for
Triggers and

Duplicate Indexes
p. 3-83

INDEXES

,

index name
Object Modes for
Constraints and
Unique Indexes

p. 3-80

Object Modes for
Constraints and
Unique Indexes

p. 3-80

,

List-Mode Format

TRIGGERS trigger name
Object Modes for

Triggers and
Duplicate Indexes

p. 3-83
3-84 Guide to 7.1 Feature Enhancements

SET
Use the list-mode format to change the object mode for a particular
constraint, index, or trigger. For example, to change the object mode of the
unique index unq_ssn on the cust_subset table to filtering mode, enter the
following statement:

SET INDEXES unq_ssn FILTERING

You can also use the list-mode format to change the object mode for a list of
constraints, indexes, or triggers that are defined on the same table. Assume
that four triggers are defined on the cust_subset table: insert_trig,
update_trig, delete_trig, and execute_trig. Also assume that all four triggers
are in the enabled mode. If you want to change the object mode of all the
triggers except execute_trig to the disabled mode, enter the following
statement:

SET TRIGGERS insert_trig, update_trig, delete_trig DISABLED

Element Purpose Restrictions Syntax

constraint name The name of the constraint
whose object mode is to be set, or
a list of constraint names. There
is no default value.

Each constraint in the list must
be a local constraint. All
constraints in the list must be
defined on the same table.

Identifier
segment,Informix
Guide to SQL: Syn-
tax

index name The name of the index whose
object mode is to be set, or a list
of index names. There is no
default value.

Each index in the list must be a
local index. All indexes in the list
must be defined on the same
table.

Identifier segment,
Informix Guide to
SQL: Syntax

trigger name The name of the trigger whose
object mode is to be set, or a list
of trigger names. There is no
default value.

Each trigger in the list must be a
local trigger. All triggers in the
list must be defined on the same
table.

Identifier segment,
Informix Guide to
SQL: Syntax
SQL Enhancements 3-85

SET
Using Object Modes with Data Manipulation Statements
You can use object modes to control the effects of INSERT, DELETE, and
UPDATE statements. Your choice of object modes affects the tables whose
data you are manipulating, the behavior of the objects defined on those
tables, and the behavior of the data manipulation statements themselves.

What do we mean by the terms enabled, disabled, and filtering? Definitions of
these object modes follow. These definitions explain how each object mode
affects tables and data manipulation statements. The definitions focus on the
object modes of constraints as an illustration, but the same principles apply
to indexes and triggers as well.

Definition of Enabled Mode

Constraints, indexes, and triggers are in the enabled mode by default. When
an object is in the enabled mode, the database server recognizes the existence
of the object and takes the object into consideration while executing data
manipulation statements. For example, when a constraint is enabled, any
INSERT, UPDATE, or DELETE statement that violates the constraint fails, and
the target row remains unchanged. In addition, the user receives an error
message.

Definition of Disabled Mode

When an object is in the disabled mode, the database server acts as if the
object did not exist and does not take it into consideration during the execu-
tion of data manipulation statements. For example, when a constraint is dis-
abled, any INSERT, UPDATE, or DELETE statement that violates the constraint
succeeds, and the target row is changed. The user does not receive an error
message.

Definition of Filtering Mode

When an object is in the filtering mode, the object behaves the same as in the
enabled mode in that the database server recognizes the existence of the
object during INSERT, UPDATE, and DELETE statements. For example, when
a constraint is in the filtering mode, and an INSERT, DELETE, or UPDATE state-
ment is executed, any target rows that violate the constraint remain
unchanged.
3-86 Guide to 7.1 Feature Enhancements

SET
However, the database server handles data manipulation statements differ-
ently for objects in enabled and filtering mode, as described in the following
paragraphs:

■ If a constraint or unique index is in the enabled mode, the database
server carries out the INSERT, UPDATE, or DELETE statement only if
all the target rows affected by the statement satisfy the constraint or
the unique index requirement. The database server updates all the
target rows in the table.

■ If a constraint or unique index is in the filtering mode, the database
server carries out the INSERT, UPDATE, or DELETE statement even if
one or more of the target rows fail to satisfy the constraint or the
unique index requirement. The database server updates the good
rows in the table—the target rows that satisfy the constraint or
unique index requirement. The database server does not update the
bad rows in the table—that is, the target rows that fail to satisfy the
constraint or unique index requirement. Instead the database server
sends each bad row to a special table called the violations table. The
database server places information about the nature of the violation
for each bad row in another special table called the diagnostics table.

Example of Object Modes with Data Manipulation
Statements
We can illustrate the differences between the enabled, disabled, and filtering
modes by using an INSERT statement as an example. Consider an INSERT
statement in which a user tries to add a row that does not satisfy an integrity
constraint on a table. For example, assume that a user joe has created a table
named cust_subset, and this table consists of the following columns: ssn
(customer’s social security number), fname (customer’s first name), lname
(customer’s last name), and city (city in which the customer lives). The ssn
column has the INT data type. The other three columns have the CHAR data
type.

Assume that user joe has defined the lname column as not null but has not
assigned a name to the not null constraint, so the database server has
implicitly assigned the name n104_7 to this constraint. Finally, assume that
user joe has created a unique index named unq_ssn on the ssn column.
SQL Enhancements 3-87

SET
Now a user linda who has the Insert privilege on the cust_subset table enters
the following INSERT statement on this table:

INSERT INTO cust_subset (ssn, fname, city)
VALUES (973824499, "jane", "los altos")

User linda has entered values for all the columns of the new row except for
the lname column, even though the lname column has been defined as a not
null column. The database server behaves in the following ways, depending
on the object mode of the constraint:

■ If the constraint is disabled, the row is inserted in the target table, and
no error is returned to the user.

■ If the constraint is enabled, the row is not inserted in the target table.
A constraint violation error is returned to the user, and the effects of
the statement are rolled back (if the database is an OnLine database
with logging).

■ If the constraint is filtering, the row is not inserted in the target table.
Instead the row is inserted in the violations table. Information about
the integrity violation caused by the row is placed in the diagnostics
table. The effects of the INSERT statement are not rolled back. You
receive an error message if you specified the with error option for the
filtering-mode constraint. By analyzing the contents of the violations
and the diagnostics tables, you can identify the reason for the failure
and either take corrective action or roll back the operation.

We can better grasp the distinctions among disabled, enabled, and filtering
modes by viewing the actual results of the INSERT statement shown in the
preceding example.

Results of the Insert Operation When the Constraint Is Disabled

If the not null constraint on the cust_subset table is disabled, the INSERT
statement that user linda issues successfully inserts the new row in this table.
The new row of the cust_subset table has the following column values.

ssn fname lname city

973824499 jane NULL los altos
3-88 Guide to 7.1 Feature Enhancements

SET
Results of the Insert Operation When the Constraint Is Enabled

If the not null constraint on the cust_subset table is enabled, the INSERT
statement fails to insert the new row in this table. Instead user linda receives
the following error message when she enters the INSERT statement:

-292 An implied insert column lname does not accept NULLs.

Results of the Insert Operation When the Constraint Is in Filtering
Mode

If the not null constraint on the cust_subset table is set to the filtering mode,
the INSERT statement that user linda issues fails to insert the new row in this
table. Instead the new row is inserted into the violations table, and a
diagnostic row that describes the integrity violation is added to the
diagnostics table.

Assume that user joe has started a violations and diagnostics table for the
cust_subset table. The violations table is named cust_subset_vio, and the
diagnostics table is named cust_subset_dia. The new row added to the
cust_subset_vio violations table when user linda issues the INSERT
statement on the cust_subset target table has the following column values.

This new row in the cust_subset_vio violations table has the following
characteristics:

■ The first four columns of the violations table exactly match the
columns of the target table. These four columns have the same names
and the same data types as the corresponding columns of the target
table, and they have the column values that were supplied by the
INSERT statement that user linda entered.

■ The value 1 in the informix_tupleid column is a unique serial
identifier assigned to the nonconforming row.

ssn fname lname city informix_tupleid informix_optype informix_recowner

973824499 jane NULL los altos 1 I linda
SQL Enhancements 3-89

SET
■ The value I in the informix_optype column is a code that identifies
the type of operation that has caused this nonconforming row to be
created. Specifically, the I stands for an insert operation.

■ The value linda in the informix_recowner column identifies the
user who issued the statement that caused this nonconforming row
to be created.

The INSERT statement that user linda issued on the cust_subset target table
also causes a diagnostic row to be added to the cust_subset_dia diagnostics
table. The new diagnostic row added to the diagnostics table has the
following column values.

This new diagnostic row in the cust_subset_dia diagnostics table has the
following characteristics:

■ This row of the diagnostics table is linked to the corresponding row
of the violations table by means of the informix_tupleid column that
appears in both tables. The value 1 appears in this column in both
tables.

■ The value C in the objtype column identifies the type of integrity
violation that the corresponding row in the violations table caused.
Specifically, the value C stands for a constraint violation.

■ The value joe in the objowner column identifies the owner of the
constraint for which an integrity violation was detected.

■ The value n104_7 in the objname column gives the name of the
constraint for which an integrity violation was detected.

By joining the violations and diagnostics tables, user joe (who owns the
cust_subset target table and its associated special tables) or the DBA can find
out that the row in the violations table whose informix_tupleid value is 1
was created after an INSERT statement and that this row is violating a
constraint. The table owner or DBA can query the sysconstraints system
catalog table to determine that this constraint is a not null constraint. Now
that the reason for the failure of the INSERT statement is known, user joe or
the DBA can take corrective action.

informix_tupleid objtype objowner objname

1 C joe n104_7
3-90 Guide to 7.1 Feature Enhancements

SET
Multiple Diagnostic Rows for One Violations Row

In the preceding example, only one row in the diagnostics table corresponds
to the new row in the violations table. However, more than one diagnostic
row can be added to the diagnostics table when a single new row is added to
the violations table. For example, if the ssn value (973824499) that user linda
entered in the INSERT statement had been the same as an existing value in the
ssn column of the cust_subset target table, only one new row would appear
in the violations table but the following two diagnostic rows would be
present in the cust_subset_dia diagnostics table.

Both rows in the diagnostics table correspond to the same row of the viola-
tions table because both of these rows have the value 1 in the
informix_tupleid column. However, the first diagnostic row identifies the
constraint violation caused by the INSERT statement that user linda issued,
while the second diagnostic row identifies the unique-index violation caused
by the same INSERT statement. In this second diagnostic row, the value I in
the objtype column stands for a unique-index violation, and the value
unq_ssn in the objname column gives the name of the index for which the
integrity violation was detected.

For information on when and how to start violations and diagnostics tables
for a target table, see “Violations and Diagnostics Tables for Filtering Mode”
on page 3-82. For further information on the structure of the violations and
diagnostics tables, see the START VIOLATIONS TABLE statement in this guide.

informix_tupleid objtype objowner objname

1 C joe n104_7

1 I joe unq_ssn
SQL Enhancements 3-91

SET
Using Object Modes to Achieve Data Integrity
In addition to using object modes with data manipulation statements, you
can also use object modes when you add a new constraint or new unique
index to a target table. By selecting the correct object mode, you can add the
constraint or index to the target table easily even if existing rows in the target
table violate the new integrity specification.

You can add a new constraint or index easily by taking the following steps. If
you follow this procedure, you do not have to examine the entire target table
to identify rows that fail to satisfy the constraint or unique-index
requirement.

■ Add the constraint or index in the enabled mode. If all existing rows
in the table satisfy the constraint or unique-index requirement, your
ALTER TABLE or CREATE INDEX statement executes successfully, and
you do not need to take any further steps. However, if any existing
rows in the table fail to satisfy the constraint or unique-index
requirement, your ALTER TABLE or CREATE INDEX statement returns
an error message, and you need to take the following steps.

■ Add the constraint or index in the disabled mode. Issue the ALTER
TABLE statement again and specify the DISABLED keyword in the
ADD CONSTRAINT or MODIFY clause, or issue the CREATE INDEX
statement again and specify the DISABLED keyword.

■ Start a violations and diagnostics table for the target table with the
START VIOLATIONS TABLE statement.

■ Issue a SET statement to switch the object mode of the constraint or
index to the enabled mode. When you issue this statement, the
statement fails and existing rows in the target table that violate the
constraint or the unique-index requirement are duplicated in the
violations table. The constraint or index remains disabled, and you
receive an integrity-violation error message.

■ Issue a SELECT statement on the violations table to retrieve the
nonconforming rows that were duplicated from the target table. You
might need to join the violations and diagnostics tables to get all the
necessary information.
3-92 Guide to 7.1 Feature Enhancements

SET
■ Take corrective action on the rows in the target table that violate the
constraint.

■ After you fix all the nonconforming rows in the target table, issue the
SET statement again to switch the disabled constraint or index to the
enabled mode. This time the constraint or index is enabled and no
integrity-violation error message is returned because all rows in the
target table now satisfy the new constraint or unique-index
requirement.

Example of Using Object Modes to Achieve Data Integrity
The following example shows how to use object modes to add a constraint
and unique index to a target table easily. Assume that a user joe has created
a table named cust_subset, and this table consists of the following columns:
ssn (customer’s social security number), fname (customer’s first name),
lname (customer’s last name), and city (city in which the customer lives).

Also assume that no constraints or unique indexes are defined on the
cust_subset table and that the fname column is the primary key. In addition,
assume that no violations and diagnostics tables currently exist for this target
table. Finally, assume that this table currently contains four rows with the
following column values.

ssn fname lname city

111763227 mark jackson sunnyvale

222781244 rhonda NULL palo alto

111763227 steve NULL san mateo

333992276 tammy jones san jose
SQL Enhancements 3-93

SET
Adding the Objects in the Enabled Mode

User joe, the owner of the cust_subset table, enters the following statements
to add a unique index on the ssn column and a not null constraint on the
lname column:

CREATE UNIQUE INDEX unq_ssn ON cust_subset (ssn) ENABLED;
ALTER TABLE cust_subset MODIFY (lname CHAR(15)

NOT NULL CONSTRAINT lname_notblank ENABLED);

Both of these statements fail because existing rows in the cust_subset table
violate the integrity specifications. The row whose fname value is rhonda
violates the not null constraint on the lname column. The row whose fname
value is steve violates both the not null constraint on the lname column and
the unique-index requirement on the ssn column.

Adding the Objects in the Disabled Mode

To recover from the preceding errors, user joe reenters the CREATE INDEX
and ALTER TABLE statements and specifies the disabled mode in both state-
ments, as follows:

CREATE UNIQUE INDEX unq_ssn ON cust_subset (ssn) DISABLED;
ALTER TABLE cust_subset MODIFY (lname CHAR(15)

NOT NULL CONSTRAINT lname_notblank DISABLED);

Both of these statements execute successfully because the database server
does not enforce unique-index requirements or constraint specifications
when these objects are disabled.

Starting a Violations and Diagnostics Table

Now that the new constraint and index are added for the cust_subset table,
user joe takes steps to find out which existing rows in the cust_subset table
violate the constraint and the index.

First, user joe enters the following statement to start a violations and
diagnostics table for the cust_subset table:

START VIOLATIONS TABLE FOR cust_subset

Because user joe has not assigned names to the violations and diagnostics
tables in this statement, the tables are named cust_subset_vio and
cust_subset_dia by default.
3-94 Guide to 7.1 Feature Enhancements

SET
Using the SET Statement to Capture Violations

Now that violations and diagnostics tables exist for the target table, user joe
issues the following SET statement to switch the mode of the new index and
constraint from the disabled mode to the enabled mode:

SET CONSTRAINTS, INDEXES FOR cust_subset ENABLED

The result of this SET statement is that the existing rows in the cust_subset
table that violate the constraint and the unique-index requirement are copied
to the cust_subset_vio violations table, and diagnostic information about the
nonconforming rows is added to the cust_subset_dia diagnostics table. The
SET statement fails, and the constraint and index remain disabled.

The following table shows the contents of the cust_subset_vio violations
table after user joe issues the SET statement:

These two rows in the cust_subset_vio violations table have the following
characteristics:

■ The row in the cust_subset target table whose fname value is
rhonda is duplicated to the cust_subset_vio violations table
because this row violates the not null constraint on the lname
column.

■ The row in the cust_subset target table whose fname value is steve
is duplicated to the cust_subset_vio violations table because this
row violates the not null constraint on the lname column and the
unique-index requirement on the ssn column.

■ The value 1 in the informix_tupleid column for the first row and the
value 2 in the informix_tupleid column for the second row are
unique serial identifiers assigned to the nonconforming rows.

ssn fname lname city informix_tupleid informix_optype informix_recowner

222781244 rhonda NULL palo alto 1 S joe

111763227 steve NULL san mateo 2 S joe
SQL Enhancements 3-95

SET
■ The value S in the informix_optype column for each row is a code
that identifies the type of operation that has caused this noncon-
forming row to be placed in the violations table. Specifically, the S
stands for a SET statement.

■ The value joe in the informix_recowner column for each row
identifies the user who issued the statement that caused this noncon-
forming row to be placed in the violations table.

The following table shows contents of the cust_subset_dia diagnostics table
after user joe issues the SET statement:

These three rows in the cust_subset_dia diagnostics table have the following
characteristics:

■ Each row in the diagnostics table and the corresponding row in the
violations table are joined by the informix_tupleid column that
appears in both tables.

■ The first row in the diagnostics table has an informix_tupleid value
of 1. It is joined to the row in the violations table whose
informix_tupleid value is 1. The value C in the objtype column for
this diagnostic row identifies the type of integrity violation that was
caused by the corresponding row in the violations table. Specifically,
the value C stands for a constraint violation. The value
lname_notblank in the objname column for this diagnostic row
gives the name of the constraint for which an integrity violation was
detected.

informix_tupleid objtype objowner objname

1 C joe lname_notblank

2 C joe lname_notblank

2 I joe unq_ssn
3-96 Guide to 7.1 Feature Enhancements

SET
■ The second row in the diagnostics table has an informix_tupleid
value of 2. It is joined to the row in the violations table whose
informix_tupleid value is 2. The value C in the objtype column for
this second diagnostic row indicates that a constraint violation was
caused by the corresponding row in the violations table. The value
lname_notblank in the objname column for this diagnostic row
gives the name of the constraint for which an integrity violation was
detected.

■ The third row in the diagnostics table has an informix_tupleid value
of 2. It is also joined to the row in the violations table whose
informix_tupleid value is 2. The value I in the objtype column for
this third diagnostic row indicates that a unique-index violation was
caused by the corresponding row in the violations table. The value
unq_ssn in the objname column for this diagnostic row gives the
name of the index for which an integrity violation was detected.

■ The value joe in the objowner column of all three diagnostic rows
identifies the owner of the object for which an integrity violation was
detected. The name of user joe appears in all three rows because he
created the constraint and index on the cust_subset table.

Identifying Nonconforming Rows and Obtaining Diagnostic
Information

To determine the contents of the violations table, user joe enters a SELECT
statement to retrieve all rows from the table. Then, to obtain complete
diagnostic information about the nonconforming rows, user joe joins the
violations and diagnostics tables by means of another SELECT statement.
User joe can perform these operations either interactively or through a
program.

Taking Corrective Action on the Nonconforming Rows

After the user joe identifies the nonconforming rows in the cust_subset table,
he can correct them. For example, he can enter UPDATE statements on the
cust_subset table either interactively or through a program.
SQL Enhancements 3-97

SET
Enabling the Disabled Objects

Once all the nonconforming rows in the cust_subset table are corrected, user
joe issues the following SET statement to set the new constraint and index to
the enabled mode:

SET CONSTRAINTS, INDEXES FOR cust_subset ENABLED

This time the SET statement executes successfully. The new constraint and
new unique index are enabled and no error message is returned to user joe
because all rows in the cust_subset table now satisfy the new constraint
specification and unique-index requirement.

Benefits of Object Modes
The preceding examples show how object modes work when users execute
data manipulation statements on target tables or add new constraints and
indexes to target tables. The preceding examples suggest some of the benefits
of the different object modes. The following sections state these benefits
explicitly.
3-98 Guide to 7.1 Feature Enhancements

SET
Benefits of Disabled Mode

The benefits of the disabled mode are as follows:

■ You can use the disabled mode to insert many rows quickly into a
target table. Especially during load operations, updates of the
existing indexes and enforcement of referential constraints make up
a big part of the total cost of the operation. By disabling the indexes
and referential constraints during the load operation, you improve
the performance and efficiency of the load.

■ To add a new constraint or new unique index to an existing table, you
can add the object even if some rows in the table do not satisfy the
new integrity specification. If the constraint or index is added to the
table in disabled mode, your ALTER TABLE or CREATE INDEX
statement does not fail no matter how many existing rows violate the
new integrity requirement.

If a violations table has been started, a SET statement that switches
the disabled objects to the enabled or filtering mode fails, but causes
the nonconforming rows in the target table to be duplicated in the
violations table so that you can identify the rows and take corrective
action. After you fix the nonconforming rows in the target table, you
can reissue the SET statement to switch the disabled objects to the
enabled or filtering mode.
SQL Enhancements 3-99

SET
Benefits of Enabled Mode

The enabled mode is the default object mode for all database objects. We can
summarize the benefits of this mode for each type of database object as
follows:

■ The benefit of enabled mode for constraints is that the database
server enforces the constraint and thus ensures the consistency of the
data in the database.

■ The benefit of enabled mode for indexes is that the database server
updates the index after insert, delete, and update operations. Thus
the index is up to date and is used by the optimizer during database
queries.

■ The benefit of enabled mode for triggers is that the trigger event
always sets the triggered action in motion. Thus the purpose of the
trigger is always realized during actual data-manipulation
operations.

Benefits of Filtering Mode

The benefits of setting a constraint or unique index to the filtering mode are
as follows:

■ During load operations, inserts that violate a filtering mode
constraint or unique index do not cause the load operation to fail.
Instead, the database server filters the bad rows to the violations
table and continues the load operation.

■ When an INSERT, DELETE, or UPDATE statement that affects multiple
rows causes a filtering mode constraint or unique index to be
violated for a particular row or rows, the statement does not fail.
Instead, the database server filters the bad row or rows to the viola-
tions table and continues to execute the statement.

■ When any INSERT, DELETE, or UPDATE statement violates a filtering
mode constraint or unique index, the user can identify the failed row
or rows and take corrective action. The violations and diagnostics
tables capture the necessary information, and users can take
corrective action after they analyze this information.
3-100 Guide to 7.1 Feature Enhancements

SET
Transaction-Mode Format

You can use the transaction-mode format of the SET statement to set the trans-
action mode of constraints.

You use the IMMEDIATE keyword to set the transaction mode of constraints
to statement-level checking. You use the DEFERRED keyword to set the trans-
action mode to transaction-level checking.

You can set the transaction mode of constraints only in an OnLine database
with logging.

Statement-Level Checking
When you set the transaction mode to immediate, statement-level checking
is turned on, and all specified constraints are checked at the end of each
INSERT, UPDATE, or DELETE statement. If a constraint violation occurs, the
statement is not executed. Immediate is the default transaction mode of
constraints.

Element Purpose Restrictions Syntax

constraint name The name of the constraint
whose transaction mode is to be
changed, or a list of constraint
names. There is no default value.

The specified constraint must ex-
ist in an OnLine database with
logging. You cannot change the
transaction mode of a constraint
to deferred mode unless the con-
straint is currently in the enabled
mode. All constraints in a list of
constraints must exist in the
same database.

Identifier segment,
Informix Guide to
SQL: Syntax

DEFERRED

IMMEDIATECONSTRAINTS

,

constraint
name

Transaction-Mode Format

ALL
SQL Enhancements 3-101

SET
Transaction-Level Checking
When you set the transaction mode of constraints to deferred, statement-
level checking is turned off, and all specified constraints are not checked until
the transaction is committed. If a constraint violation occurs while the trans-
action is being committed, the transaction is rolled back.

Tip: If you defer checking a primary-key constraint, the checking of the not null con-
straint for that column or set of columns is also deferred.

Duration of Transaction Modes
The duration of the transaction mode that the SET statement specifies is the
transaction in which the SET statement is executed. You cannot execute this
form of the SET statement outside a transaction. Once a COMMIT WORK or
ROLLBACK WORK statement is successfully completed, the transaction mode
of all constraints reverts to IMMEDIATE.

Switching Transaction Modes
To switch from transaction-level checking to statement-level checking, you
can use the SET statement to set the transaction mode to immediate, or you
can use a COMMIT WORK or ROLLBACK WORK statement in your transaction.

Specifying All Constraints or a List of Constraints
You can specify all constraints in the database in your SET statement, or you
can specify a single constraint or list of constraints.

Specifying All Constraints

If you specify the ALL keyword, the SET statement sets the transaction mode
for all constraints in the database. If any statement in the transaction requires
that any constraint on any table in the database be checked, the database
server performs the checks at the statement level or the transaction level,
depending on the setting that you specify in the SET statement.
3-102 Guide to 7.1 Feature Enhancements

SET
Specifying a List of Constraints

If you specify a single constraint name or a list of constraints, the SET
statement sets the transaction mode for the specified constraints only. If any
statement in the transaction requires checking of a constraint that you did not
specify in the SET statement, that constraint is checked at the statement level
regardless of the setting that you specified in the SET statement for other
constraints.

When you specify a list of constraints, the constraints do not have to be
defined on the same table, but they must exist in the same database.

Specifying Remote Constraints
You can set the transaction mode of local constraints or remote constraints.
That is, the constraints specified in the transaction-mode form of the SET
statement can be constraints defined on local tables or constraints defined on
remote tables.

Examples of Setting the Transaction Mode for Constraints
The following example shows how to defer checking constraints within a
transaction until the transaction is complete. The SET CONSTRAINTS
statement in the example specifies that any constraints on any tables in the
database are not checked until the COMMIT WORK statement is encountered.

BEGIN WORK
SET CONSTRAINTS ALL DEFERRED
.
.
.
COMMIT WORK

The following example specifies that a list of constraints is not checked until
the transaction is complete:

BEGIN WORK
SET CONSTRAINTS update_const, insert_const DEFERRED
.
.
.
COMMIT WORK
SQL Enhancements 3-103

SET
References
See the START VIOLATIONS TABLE and STOP VIOLATIONS TABLE statements
in this guide.

For information on the system catalog tables associated with the SET
statement, see the SYSOBJSTATE and SYSVIOLATIONS tables in this guide.
3-104 Guide to 7.1 Feature Enhancements

SET ROLE
SET ROLE
Use the SET ROLE statement to enable the privileges of a role.

Syntax

Usage
Any user who is granted a role can enable the role using the SET ROLE
statement. A user can only enable one role at a time. If a user executes the SET
ROLE statement after a role is already set, the new role replaces the old role.

All users are, by default, assigned the role NULL or NONE (NULL and NONE
are synonymous.) The roles NULL and NONE have no privileges. When you
set the role to NULL or NONE, you disable the current role.

When a user sets a role, the user gains the privileges of the role, in addition
to the privileges of PUBLIC and the user’s own privileges. If a role is granted
to another role, the user gains the privileges of both roles, in addition to those
of PUBLIC and the user’s own privileges. After a SET ROLE statement executes
successfully, the role remains effective until the current database is closed or
the user executes another SET ROLE statement. Additionally, the user, not the
role, retains ownership of all the objects, such as tables, created during a
session.

A user cannot execute the SET ROLE statement while in a transaction. If the
SET ROLE statement is executed while a transaction is active, an error occurs.

Element Purpose Restrictions Syntax

role name Name of the role The role must have been created
with the CREATE ROLE statement

Identifier segment,
Informix Guide to
SQL: Syntax

SET ROLE role name

NULL

NONE

+

OL
SQL Enhancements 3-105

SET ROLE
If the SET ROLE statement is executed as a part of a trigger or stored
procedure and the owner of the trigger or stored procedure was granted the
role with the WITH GRANT OPTION, the role is enabled even if the user is not
granted the role.

The following example sets the role engineer:

SET ROLE engineer

The following example sets a role and then relinquishes the role after
performing a SELECT operation:

EXEC SQL SET ROLE engineer;
EXEC SQL SELECT fname, lname, project

INTO :efname, :elname, :eproject
WHERE project_num > 100 AND lname = 'Larkin';

printf ("%s is working on %s\n", :efname, :eproject);
EXEC SQL SET ROLE NULL;

References
See the GRANT and REVOKE statements in this guide and in the Informix
Guide to SQL: Syntax.

See the CREATE ROLE and DROP ROLE statements in this guide.
3-106 Guide to 7.1 Feature Enhancements

SET SESSION AUTHORIZATION
SET SESSION AUTHORIZATION
The SET SESSION AUTHORIZATION statement lets you change the user name
under which database operations are performed in the current OnLine
session. This statement is enabled by the DBA privilege, which you must
obtain from the DBA before the start of your current session. The new identity
remains in effect until you execute another SET SESSION AUTHORIZATION
statement or until you close the current database.

Syntax

Usage
The SET SESSION AUTHORIZATION statement allows a user with the DBA
privilege to bypass the privileges that protect database objects. You can use
this statement to gain access to a table and adopt the identity of a table owner
to grant access privileges. You must obtain the DBA privilege before you start
a session in which you use this statement. Otherwise, this statement returns
an error.

When you use this statement, the user name to which the authorization is set
must have the Connect privilege on the current database. Additionally, the
DBA cannot set the authorization to PUBLIC or to any defined role in the
current database.

Element Purpose Restrictions Syntax

' user ' The name of a user Must be a valid user name Identifier, Informix
Guide to SQL:
Syntax

SET SESSION AUTHORIZATION TO ' user'
ESQL

OL
SQL Enhancements 3-107

SET SESSION AUTHORIZATION
The SET SESSION AUTHORIZATION statement applies only to OnLine,
INFORMIX-ESQL/C and INFORMIX-ESQL/COBOL. When you cannot issue
the statement directly, you can prepare and execute a dynamic SQL statement
instead. For more information on dynamic SQL, refer to the Informix Guide to
SQL: Tutorial.

Setting a session to another user causes a change in a user name in the current
active database server. In other words, these users are, as far as this database
server process is concerned, completely dispossessed of any privileges that
they might have while accessing the database server through some adminis-
trative utility. Additionally, the new session user is not able to initiate an
administrative operation (execute a utility, for example) by virtue of the
acquired identity.

After the SET SESSION AUTHORIZATION statement successfully executes, the
user must use the SET ROLE statement to assume a role granted to the current
user. Any role enabled by a previous user is relinquished.

Using the SET SESSION AUTHORIZATION Statement to Obtain
Privileges

You can use the SET SESSION AUTHORIZATION statement either to obtain
access to the data directly or to grant the database-level or table-level
privileges needed for the database operation to proceed. The following
example shows how to use the SET SESSION AUTHORIZATION statement to
obtain table-level privileges:

SET SESSION AUTHORIZATION TO 'cathl';
GRANT ALL ON spec TO mary;
SET SESSION AUTHORIZATION TO 'mary';
UPDATE case

SET col1 = SELECT state FROM zip
WHERE zip_code = 94433;
3-108 Guide to 7.1 Feature Enhancements

START VIOLATIONS TABLE
START VIOLATIONS TABLE
The START VIOLATIONS TABLE statement creates a violations table and a
diagnostics table for a specified target table. The database server associates
the violations and diagnostics tables with the target table by recording the
relationship among the three tables in the sysviolations system catalog table.

Syntax

Element Purpose Restrictions Syntax

diagnostics The name of the diagnostics
table to be associated with the
target table. The default name is
the name of the target table
followed by the characters _dia.
For further information on the
diagnostics table, see “Structure
of the Diagnostics Table” on
page 3-121.

Whether you specify the name of
the diagnostics table explicitly or
the database server generates
the name implicitly, the name
cannot match the name of any
existing table in the database.

Identifier segment,
Informix Guide to
SQL: Syntax

numrows The maximum number of rows
that can be inserted into the
diagnostics table when a single
statement (for example, INSERT
or SET) is executed on the target
table. There is no default value
for numrows. If you do not
specify a value for numrows,
there is no upper limit on the
number of rows that can be
inserted into the diagnostics
table when a single statement is
executed on the target table.

You must specify an integer
value in the range 1 to the
maximum value of the INTEGER
data type.

Literal Number seg-
ment, Informix
Guide to SQL: Syn-
tax

 (1 of 2)

START VIOLATIONS TABLE FOR tablename

numrowsMAX ROWSUSING violations , diagnostics

+

SQL Enhancements 3-109

START VIOLATIONS TABLE
Usage
The START VIOLATIONS TABLE statement creates the special violations table
that holds rows that fail to satisfy constraints and unique indexes during
insert, update, and delete operations on target tables. This statement also
creates the special diagnostics table that contains information about the
integrity violations caused by each row in the violations table.

table name The name of the target table for
which a violations table and
diagnostics table are to be
created. There is no default
value.

If you do not include the USING
clause in the statement, the name
of the target table must be less
than 15 characters. The target
table cannot have a violations
and diagnostics table associated
with it before you execute the
statement. The target table
cannot be a system catalog table.
The target table must be a local
table. For information on the
privileges required to start a
violations and diagnostics table
for a target table, see “Privileges
Required for Starting Violations
Tables” on page 3-112.

Identifier segment,
Informix Guide to
SQL: Syntax

violations The name of the violations table
to be associated with the target
table. The default name is the
name of the target table followed
by the characters _vio. For
further information on the
violations table, see “Structure of
the Violations Table” on
page 3-113.

Whether you specify the name of
the violations table explicitly or
the database server generates
the name implicitly, the name
cannot match the name of any
existing table in the database.

Identifier segment,
Informix Guide to
SQL: Syntax

Element Purpose Restrictions Syntax

 (2 of 2)
3-110 Guide to 7.1 Feature Enhancements

START VIOLATIONS TABLE
Relationship of START VIOLATIONS TABLE and SET Statements

The START VIOLATIONS TABLE statement is closely related to the SET
statement. If you use the SET statement to set the constraints or unique
indexes defined on a table to the filtering object mode, but you do not use the
START VIOLATIONS TABLE statement to start the violations and diagnostics
tables for this target table, any rows that violate a constraint or unique index
requirement during an insert, update, or delete operation are not filtered out
to a violations table. Instead you receive an error message indicating that you
must start a violations table for the target table.

Similarly, if you use the SET statement to set a disabled constraint or disabled
unique index to the enabled or filtering object mode, but you do not use the
START VIOLATIONS TABLE statement to start the violations and diagnostics
tables for the table on which the objects are defined, any existing rows in the
table that do not satisfy the constraint or unique-index requirement are not
filtered out to a violations table. If, in these cases, you want the ability to
identify existing rows that do not satisfy the constraint or unique-index
requirement, you must issue the START VIOLATIONS TABLE statement to start
the violations and diagnostics tables before you issue the SET statement to set
the objects to the enabled or filtering object mode.

Starting and Stopping the Violations and Diagnostics Tables

After you use a START VIOLATIONS TABLE statement to create an association
between a target table and the violations and diagnostics tables, the only way
to drop the association between the target table and the violations and
diagnostics tables is to issue a STOP VIOLATIONS TABLE statement for the
target table. For further information on the STOP VIOLATIONS TABLE
statement, see “STOP VIOLATIONS TABLE” on page 3-128.

Examples of START VIOLATIONS TABLE Statements

The following examples show different ways to execute the START
VIOLATIONS TABLE statement.
SQL Enhancements 3-111

START VIOLATIONS TABLE
Starting Violations and Diagnostics Tables Without Specifying Their Names

The following statement starts violations and diagnostics tables for the target
table named cust_subset. The violations table is named cust_subset_vio by
default, and the diagnostics table is named cust_subset_dia by default.

START VIOLATIONS TABLE FOR cust_subset

Starting Violations and Diagnostics Tables and Specifying Their Names

The following statement starts a violations and diagnostics table for the
target table named items. The USING clause assigns explicit names to the
violations and diagnostics tables. The violations table is to be named
exceptions, and the diagnostics table is to be named reasons.

START VIOLATIONS TABLE FOR items
USING exceptions, reasons

Specifying the Maximum Number of Rows in the Diagnostics Table

The following statement starts violations and diagnostics tables for the target
table named orders. The MAX ROWS clause specifies the maximum number
of rows that can be inserted into the diagnostics table when a single
statement, such as an INSERT or SET statement, is executed on the target table.

START VIOLATIONS TABLE FOR orders MAX ROWS 50000

Privileges Required for Starting Violations Tables
To start a violations and diagnostics table for a target table, you must meet
one of the following requirements:

■ You must have the DBA privilege on the database.

■ You must be the owner of the target table and have the Resource
privilege on the database.

■ You must have the Alter privilege on the target table and the
Resource privilege on the database.
3-112 Guide to 7.1 Feature Enhancements

START VIOLATIONS TABLE
Structure of the Violations Table
When you issue a START VIOLATIONS TABLE statement for a target table, the
violations table created by the statement has a predefined structure. This
structure consists of the columns of the target table and three additional
columns.

The following table shows the structure of the violations table.

Column Name Type Explanation

All columns of the target
table, in the same order
that they appear in the
target table

These columns of the
violations table match the
data type of the
corresponding columns
in the target table, except
that SERIAL columns in
the target table are
converted to INTEGER
data types in the
violations table.

The table definition of the target table is
reproduced in the violations table so that rows
that violate constraints or unique index
requirements during insert, update, and delete
operations can be filtered to the violations table.
Users can examine these bad rows in the
violations table, analyze the related rows that
contain diagnostics information in the diagnostics
table, and take corrective actions.

informix_tupleid SERIAL This column contains the unique serial identifier
that is assigned to the nonconforming row.

informix_optype CHAR(1) This column indicates the type of operation that
caused this bad row. This column can have the
following values:

I = Insert

D = Delete

O = Update (with this row containing the
original values)

N = Update (with this row containing the
new values)

S = SET statement

informix_recowner CHAR(8) This column identifies the user who issued the
statement that created this bad row.
SQL Enhancements 3-113

START VIOLATIONS TABLE
Relationship Between the Violations and Diagnostics Tables

Users can take advantage of the relationships among the target table, viola-
tions table, and diagnostics table to obtain complete diagnostic information
about rows that have caused data-integrity violations during INSERT,
DELETE, and UPDATE statements.

Each row of the violations table has at least one corresponding row in the
diagnostics table. The row in the violations table contains a copy of the row
in the target table for which a data-integrity violation was detected. The row
in the diagnostics table contains information about the nature of the data-
integrity violation caused by the bad row in the violations table. The row in
the violations table has a unique serial identifier in the informix_tupleid
column. The row in the diagnostics table has the same serial identifier in its
informix_tupleid column.

A given row in the violations table can have more than one corresponding
row in the diagnostics table. The multiple rows in the diagnostics table all
have the same serial identifier in their informix_tupleid column so that they
are all linked to the same row in the violations table. Multiple rows can exist
in the diagnostics table for the same row in the violations table because a bad
row in the violations table can cause more than one data-integrity violation.

For example, a bad row can violate a unique-index requirement for one
column, a not null constraint for another column, and a check constraint for
yet another column. In this case, the diagnostics table contains three rows for
the single bad row in the violations table. Each of these diagnostic rows
identifies a different data-integrity violation caused by the nonconforming
row in the violations table.

By joining the violations and diagnostics tables, the DBA or target table owner
can obtain complete diagnostic information about any or all bad rows in the
violations table. You can use SELECT statements to perform these joins
interactively, or you can write a program to perform them within
transactions.
3-114 Guide to 7.1 Feature Enhancements

START VIOLATIONS TABLE
Initial Privileges on the Violations Table

When you issue the START VIOLATIONS TABLE statement to create the viola-
tions table, the database server uses the set of privileges granted on the target
table as a basis for granting privileges on the violations table. However, the
database server follows different rules when it grants each type of privilege.

The following table shows the initial set of privileges on the violations table.
The Privilege column lists the privilege. The Condition column explains the
conditions under which the database server grants the privilege to a user.

Privilege Condition

Insert The user has the Insert privilege on the violations table if the user has
any of the following privileges on the target table: the Insert privilege,
the Delete privilege, or the Update privilege on any column.

Delete The user has the Delete privilege on the violations table if the user has
any of the following privileges on the target table: the Insert privilege,
the Delete privilege, or the Update privilege on any column.

Select The user has the Select privilege on the informix_tupleid,
informix_optype, and informix_recowner columns of the violations
table if the user has the Select privilege on any column of the target
table.

The user has the Select privilege on any other column of the violations
table if the user has the Select privilege on the same column in the
target table.

Update The user has the Update privilege on the informix_tupleid,
informix_optype, and informix_recowner columns of the violations
table if the user has the Update privilege on any column of the target
table.

The user has the Update privilege on any other column of the
violations table if the user has the Update privilege on the same
column in the target table.

 (1 of 2)
SQL Enhancements 3-115

START VIOLATIONS TABLE
The following rules apply to ownership of the violations table and privileges
on the violations table:

■ When the violations table is created, the owner of the target table
becomes the owner of the violations table.

■ The owner of the violations table automatically receives all table-
level privileges on the violations table, including the Alter and Refer-
ences privileges. However, the database server prevents the owner of
the violations table from altering the violations table or adding a
referential constraint to the violations table.

■ You can use the GRANT and REVOKE statements to modify the initial
set of privileges on the violations table.

■ When you issue an INSERT, DELETE, or UPDATE statement on a target
table that has a filtering mode unique index or constraint defined on
it, you must have the Insert privilege on the violations and
diagnostics tables.

If you do not have the Insert privilege on the violations and
diagnostics tables, the database server executes the INSERT, DELETE,
or UPDATE statement on the target table provided that you have the
necessary privileges on the target table. The database server does not
return an error concerning the lack of insert permission on the viola-
tions and diagnostics tables unless an integrity violation is detected
during the execution of the INSERT, DELETE, or UPDATE statement.

Index The user has the Index privilege on the violations table if the user has
the Index privilege on the target table.

Alter The Alter privilege is not granted on the violations table. (Users cannot
alter violations tables.)

References The References privilege is not granted on the violations table. (Users
cannot add referential constraints to violations tables.)

Privilege Condition

 (2 of 2)
3-116 Guide to 7.1 Feature Enhancements

START VIOLATIONS TABLE
Similarly, when you issue a SET statement to set a disabled constraint
or disabled unique index to the enabled or filtering mode, and a
violations and diagnostics table exist for the target table, you must
have the Insert privilege on the violations and diagnostics tables.

If you do not have the Insert privilege on the violations and
diagnostics tables, the database server executes the SET statement
provided that you have the necessary privileges on the target table.
The database server does not return an error concerning the lack of
insert permission on the violations and diagnostics tables unless an
integrity violation is detected during the execution of the SET
statement.

■ The grantor of the initial set of privileges on the violations table is the
same as the grantor of the privileges on the target table. For example,
if the user henry has been granted the Insert privilege on the target
table by both the user jill and the user albert, the Insert privilege on
the violations table is granted to user henry both by user jill and by
user albert.

■ Once a violations table has been started for a target table, revoking a
privilege on the target table from a user does not automatically
revoke the same privilege on the violations table from that user.
Instead you must explicitly revoke the privilege on the violations
table from the user.

■ If you have fragment-level privileges on the target table, you have
the corresponding fragment-level privileges on the violations table.

Example of Privileges on the Violations Table

The following example illustrates how the initial set of privileges on a viola-
tions table is derived from the current set of privileges on the target table.

For example, assume that we have created a table named cust_subset and
that this table consists of the following columns: ssn (customer’s social
security number), fname (customer’s first name), lname (customer’s last
name), and city (city in which the customer lives).

The following set of privileges exists on the cust_subset table:

■ User alvin is the owner of the table.

■ User barbara has the Insert and Index privileges on the table. She
also has the Select privilege on the ssn and lname columns.
SQL Enhancements 3-117

START VIOLATIONS TABLE
■ User carrie has the Update privilege on the city column. She also has
the Select privilege on the ssn column.

■ User danny has the Alter privilege on the table.

Now user alvin starts a violations table named cust_subset_viols and a
diagnostics table named cust_subset_diags for the cust_subset table, as
follows:

START VIOLATIONS TABLE FOR cust_subset
USING cust_subset_viols, cust_subset_diags

The database server grants the following set of initial privileges on the
cust_subset_viols violations table:

■ User alvin is the owner of the violations table, so he has all table-
level privileges on the table.

■ User barbara has the Insert, Delete, and Index privileges on the
violations table. She also has the Select privilege on the following
columns of the violations table: the ssn column, the lname column,
the informix_tupleid column, the informix_optype column, and the
informix_recowner column.

■ User carrie has the Insert and Delete privileges on the violations
table. She has the Update privilege on the following columns of the
violations table: the city column, the informix_tupleid column, the
informix_optype column, and the informix_recowner column. She
has the Select privilege on the following columns of the violations
table: the ssn column, the informix_tupleid column, the
informix_optype column, and the informix_recowner column.

■ User danny has no privileges on the violations table.
3-118 Guide to 7.1 Feature Enhancements

START VIOLATIONS TABLE
Using the Violations Table

The following rules concern the structure and use of the violations table:

■ Every pair of update rows in the violations table has the same value
in the informix_tupleid column to indicate that both rows refer to
the same row in the target table.

■ If the target table has columns named informix_tupleid,
informix_optype, or informix_recowner, the database server
attempts to generate alternative names for these columns in the
violations table by appending a digit to the end of the column name
(for example, informix_tupleid1). If this attempt fails, the database
server returns an error, and the violations table is not started for the
target table.

■ When a table functions as a violations table, it cannot have triggers
or constraints defined on it.

■ When a table functions as a violations table, users can create indexes
on the table, even though the existence of an index affects perfor-
mance. Unique indexes on the violations table cannot be set to the
filtering object mode.

■ If a target table has a violations and diagnostics table associated with
it, dropping the target table in cascade mode (the default mode)
causes the violations and diagnostics tables to be dropped also. If the
target table is dropped in the restricted mode, the existence of the
violations and diagnostics tables causes the DROP TABLE statement
to fail.

■ Once a violations table is started for a target table, you cannot use the
ALTER TABLE statement to add, modify, or drop columns in the target
table, violations table, or diagnostics table. Before you can alter any
of these tables, you must issue a STOP TABLE VIOLATIONS statement
for the target table.

■ The database server does not clear out the contents of the violations
table before or after it uses the violations table during an Insert,
Update, Delete, or Set operation.
SQL Enhancements 3-119

START VIOLATIONS TABLE
■ If a target table has a filtering-mode constraint or unique index
defined on it and a violations table associated with it, users cannot
insert into the target table by selecting from the violations table.
Before you insert rows into the target table by selecting from the
violations table, you must take one of the following steps:

❑ You can set the object mode of the constraint or unique index to
the enabled or disabled object mode.

❑ You can issue a STOP VIOLATIONS TABLE statement for the target
table.

If it is inconvenient to take either of these steps, but you still want to
copy records from the violations table into the target table, a third
option is to select from the violations table into a temporary table and
then insert the contents of the temporary table into the target table.

■ If the target table specified in the START VIOLATIONS TABLE
statement is fragmented, the violations table has the same fragmen-
tation strategy as the target table. Each fragment of the violations
table is stored in the same dbspace as the corresponding fragment of
the target table.

■ If the target table specified in the START VIOLATIONS TABLE
statement is not fragmented, the database server places the viola-
tions table in the same dbspace as the target table.

■ If the target table has blob columns, blobs in the violations table are
created in the same blob space as the blobs in the target table.

Example of a Violations Table

To start a violations and diagnostics table for the target table named customer
in the stores7 demonstration database, enter the following statement:

START VIOLATIONS TABLE FOR customer
3-120 Guide to 7.1 Feature Enhancements

START VIOLATIONS TABLE
Because your START VIOLATIONS statement does not include a USING clause,
the violations table is named customer_vio by default. The customer_vio
table includes the following columns:

customer_num
fname
lname
company
address1
address2
city
state
zipcode
phone
informix_tupleid
informix_optype
informix_recowner

The customer_vio table has the same table definition as the customer table
except that the customer_vio table has three additional columns that contain
information about the operation that caused the bad row.

Structure of the Diagnostics Table
When you issue a START VIOLATIONS TABLE statement for a target table, the
diagnostics table created by the statement has a predefined structure. This
structure is independent of the structure of the target table.

The following table shows the structure of the diagnostics table.

Column Name Type Explanation

informix_tupleid INTEGER This column in the diagnostics table implicitly
refers to the values in the informix_tupleid
column in the violations table. However, this
relationship is not declared as a foreign-key to
primary-key relationship.

objtype CHAR(1) This column identifies the type of the violation.
This column can have the following values.

C = Constraint violation

I = Unique index violation

 (1 of 2)
SQL Enhancements 3-121

START VIOLATIONS TABLE
Initial Privileges on the Diagnostics Table

When the START VIOLATIONS TABLE statement creates the diagnostics table,
the database server uses the set of privileges granted on the target table as a
basis for granting privileges on the diagnostics table. However, the database
server follows different rules when it grants each type of privilege.

The following table shows the initial set of privileges on the diagnostics table.
The Privilege column lists the privilege. The Condition column explains the
conditions under which the database server grants the privilege to a user.

objowner CHAR(8) This column identifies the owner of the constraint
or index for which an integrity violation was
detected.

objname CHAR(18) This column contains the name of the constraint
or index for which an integrity violation was
detected.

Column Name Type Explanation

 (2 of 2)

Privilege Condition

Insert The user has the Insert privilege on the diagnostics table if the user has
any of the following privileges on the target table: the Insert privilege,
the Delete privilege, or the Update privilege on any column.

Delete The user has the Delete privilege on the diagnostics table if the user has
any of the following privileges on the target table: the Insert privilege,
the Delete privilege, or the Update privilege on any column.

Select The user has the Select privilege on the diagnostics table if the user has
the Select privilege on any column in the target table.

Update The user has the Update privilege on the diagnostics table if the user
has the Update privilege on any column in the target table.

 (1 of 2)
3-122 Guide to 7.1 Feature Enhancements

START VIOLATIONS TABLE
The following rules concern privileges on the diagnostics table:

■ When the diagnostics table is created, the owner of the target table
becomes the owner of the diagnostics table.

■ The owner of the diagnostics table automatically receives all table-
level privileges on the diagnostics table, including the Alter and
References privileges. However, the database server prevents the
owner of the diagnostics table from altering the diagnostics table or
adding a referential constraint to the diagnostics table.

■ You can use the GRANT and REVOKE statements to modify the initial
set of privileges on the diagnostics table.

■ When you issue an INSERT, DELETE, or UPDATE statement on a target
table that has a filtering mode unique index or constraint defined on
it, you must have the Insert privilege on the violations and
diagnostics tables.

If you do not have the Insert privilege on the violations and
diagnostics tables, the database server executes the INSERT, DELETE,
or UPDATE statement on the target table provided that you have the
necessary privileges on the target table. The database server does not
return an error concerning the lack of insert permission on the viola-
tions and diagnostics tables unless an integrity violation is detected
during the execution of the INSERT, DELETE, or UPDATE statement.

Similarly, when you issue a SET statement to set a disabled constraint
or disabled unique index to the enabled or filtering mode, and a
violations and diagnostics table exist for the target table, you must
have the Insert privilege on the violations and diagnostics tables.

Index The user has the Index privilege on the diagnostics table if the user has
the Index privilege on the target table.

Alter The Alter privilege is not granted on the diagnostics table. (Users can-
not alter diagnostics tables.)

References The References privilege is not granted on the diagnostics table. (Users
cannot add referential constraints to diagnostics tables.)

Privilege Condition

 (2 of 2)
SQL Enhancements 3-123

START VIOLATIONS TABLE
If you do not have the Insert privilege on the violations and
diagnostics tables, the database server executes the SET statement
provided that you have the necessary privileges on the target table.
The database server does not return an error concerning the lack of
insert permission on the violations and diagnostics tables unless an
integrity violation is detected during the execution of the SET
statement.

■ The grantor of the initial set of privileges on the diagnostics table is
the same as the grantor of the privileges on the target table. For
example, if the user jenny has been granted the Insert privilege on
the target table by both the user wayne and the user laurie, the Insert
privilege on the diagnostics table is granted to user jenny both by
user wayne and by user laurie.

■ Once a diagnostics table has been started for a target table, revoking
a privilege on the target table from a user does not automatically
revoke the same privilege on the diagnostics table from that user.
Instead you must explicitly revoke the privilege on the diagnostics
table from the user.

■ If you have fragment-level privileges on the target table, you have
the corresponding table-level privileges on the diagnostics table.

Example of Privileges on the Diagnostics Table

The following example illustrates how the initial set of privileges on a
diagnostics table is derived from the current set of privileges on the target
table.

For example, assume that there is a table called cust_subset and that this
table consists of the following columns: ssn (customer’s social security
number), fname (customer’s first name), lname (customer’s last name), and
city (city in which the customer lives).

The following set of privileges exists on the cust_subset table:

■ User alvin is the owner of the table.

■ User barbara has the Insert and Index privileges on the table. She
also has the Select privilege on the ssn and lname columns.
3-124 Guide to 7.1 Feature Enhancements

START VIOLATIONS TABLE
■ User carrie has the Update privilege on the city column. She also has
the Select privilege on the ssn column.

■ User danny has the Alter privilege on the table.

Now user alvin starts a violations table named cust_subset_viols and a
diagnostics table named cust_subset_diags for the cust_subset table, as
follows:

START VIOLATIONS TABLE FOR cust_subset
USING cust_subset_viols, cust_subset_diags

The database server grants the following set of initial privileges on the
cust_subset_diags diagnostics table:

■ User alvin is the owner of the diagnostics table, so he has all table-
level privileges on the table.

■ User barbara has the Insert, Delete, Select, and Index privileges on
the diagnostics table.

■ User carrie has the Insert, Delete, Select, and Update privileges on
the diagnostics table.

■ User danny has no privileges on the diagnostics table.

Using the Diagnostics Table

For information on the relationship between the diagnostics table and the
violations table, see “Relationship Between the Violations and Diagnostics
Tables” on page 3-114.

The following issues concern the structure and use of the diagnostics table:

■ The MAX ROWS clause of the START VIOLATIONS TABLE statement
sets a limit on the number of rows that can be inserted into the
diagnostics table when you execute a single statement, such as an
INSERT or SET statement, on the target table.

■ The MAX ROWS clause limits the number of rows only for operations
in which the table functions as a diagnostics table.

■ When a table functions as a diagnostics table, it cannot have triggers
or constraints defined on it.
SQL Enhancements 3-125

START VIOLATIONS TABLE
■ When a table functions as a diagnostics table, users can create
indexes on the table, even though the existence of an index affects
performance. You cannot set unique indexes on the diagnostics table
to the filtering object mode.

■ If a target table has a violations and diagnostics table associated with
it, dropping the target table in the cascade mode (the default mode)
causes the violations and diagnostics tables to be dropped also. If the
target table is dropped in the restricted mode, the existence of the
violations and diagnostics tables causes the DROP TABLE statement
to fail.

■ Once a violations table is started for a target table, you cannot use the
ALTER TABLE statement to add, modify, or drop columns in the target
table, violations table, or diagnostics table. Before you can alter any
of these tables, you must issue a STOP TABLE VIOLATIONS statement
for the target table.

■ The database server does not clear out the contents of the diagnostics
table before or after it uses the diagnostics table during an Insert,
Update, Delete, or Set operation.

■ If the target table specified in the START VIOLATIONS TABLE
statement is fragmented, the diagnostics table is fragmented with a
round-robin strategy over the same dbspaces in which the target
table is fragmented.

Example of a Diagnostics Table

To start a violations and diagnostics table for the target table named stock in
the stores7 demonstration database, enter the following statement:

START VIOLATIONS TABLE FOR stock

Because your START VIOLATIONS TABLE statement does not include a USING
clause, the diagnostics table is named stock_dia by default. The stock_dia
table includes the following columns:

informix_tupleid
objtype
objowner
objname
3-126 Guide to 7.1 Feature Enhancements

START VIOLATIONS TABLE
This list of columns shows an important difference between the diagnostics
table and violations table for a target table. Whereas the violations table has
a matching column for every column in the target table, the columns of the
diagnostics table do not match any columns in the target table. The
diagnostics table created by any START VIOLATIONS TABLE statement always
has the same columns with the same column names and data types.

References
See the STOP VIOLATIONS TABLE and SET statements in this guide.

For information on the system catalog tables associated with the START
VIOLATIONS TABLE statement, see the SYSOBJSTATE and SYSVIOLATIONS
tables in this guide.
SQL Enhancements 3-127

STOP VIOLATIONS TABLE
STOP VIOLATIONS TABLE
The STOP VIOLATIONS TABLE statement drops the association between a
target table and the special violations and diagnostics tables.

Syntax

Usage
The STOP VIOLATIONS TABLE statement drops the association between the
target table and the violations and diagnostics tables. After you issue this
statement, the former violations and diagnostics tables continue to exist, but
they no longer function as violations and diagnostics tables for the target
table. They now have the status of regular database tables instead of viola-
tions and diagnostics tables for the target table. You must issue the DROP
TABLE statement to explicitly drop these two tables.

When Insert, Delete, and Update operations cause data-integrity violations
for rows of the target table, the nonconforming rows are no longer filtered to
the former violations table, and diagnostics information about the data-
integrity violations is not placed in the former diagnostics table.

Element Purpose Restrictions Syntax
table name The name of the target table

whose association with the
violations and diagnostics table
is to be dropped. There is no
default value.

The target table must have a
violations and diagnostics table
associated with it before you can
execute the statement. The target
table must be a local table. For
information on the privileges
required to stop violations and
diagnostics tables for a target
table, see “Privileges Required
for Stopping a Violations Table”
on page 3-129.

Identifier segment,
Informix Guide to
SQL: Syntax

STOP VIOLATIONS TABLE FOR tablename+
3-128 Guide to 7.1 Feature Enhancements

STOP VIOLATIONS TABLE
Example of Stopping a Violations and Diagnostics Table

Assume that a target table named cust_subset has an associated violations
table named cust_subset_vio and an associated diagnostics table named
cust_subset_dia. To drop the association between the target table and the
violations and diagnostics tables, enter the following statement:

STOP VIOLATIONS TABLE FOR cust_subset

Example of Dropping a Violations and Diagnostics Table

After you execute the STOP VIOLATIONS TABLE statement in the preceding
example, the cust_subset_vio and cust_subset_dia tables continue to exist,
but they are no longer associated with the cust_subset table. Instead they
now have the status of regular database tables. To drop these two tables, enter
the following statements:

DROP TABLE cust_subset_vio;
DROP TABLE cust_subset_dia;

Privileges Required for Stopping a Violations Table
To stop a violations and diagnostics table for a target table, you must meet
one of the following requirements:

■ You must have the DBA privilege on the database.

■ You must be the owner of the target table and have the Resource
privilege on the database.

■ You must have the Alter privilege on the target table and the
Resource privilege on the database.

References
See the SET and START VIOLATIONS TABLE statements in this guide.

For information on the system catalog tables associated with the STOP
VIOLATIONS TABLE statement, see the SYSOBJSTATE and SYSVIOLATIONS
tables in this guide.
SQL Enhancements 3-129

UPDATE STATISTICS
UPDATE STATISTICS
The UPDATE STATISTICS statement has the following changes in this release:

■ The DISTRIBUTIONS ONLY option has been added to the MEDIUM
and HIGH clauses.

■ A new procedure is recommended for giving the optimizer the best
possible information to use in determining the optimal execution
path for queries.
3-130 Guide to 7.1 Feature Enhancements

UPDATE STATISTICS
Syntax

FOR PROCEDURE

Procedure
Name

see SQLS

DROP
DISTRIBUTIONS

MEDIUM

RESOLUTION percent

HIGH

LOW

RESOLUTION percent

UPDATE STATISTICS+

Synonym
Name

see SQLS

Table
Name

see SQLS
,

column
name

()

FOR
TABLE

Synonym
Name

see SQLS

Table
Name

see SQLS
,

column
name

()

FOR
TABLE

Synonym
Name

see SQLS

Table
Name

see SQLS
,

column
name

()

FOR
TABLE

DISTRIBUTIONS ONLY
conf

DISTRIBUTIONS ONLY

OL

OL
SQL Enhancements 3-131

UPDATE STATISTICS
In this release, when you specify the DISTRIBUTIONS ONLY option with either
the MEDIUM or HIGH clause, index information is not constructed for the
specified tables or columns.

The DISTRIBUTIONS ONLY option is meaningful only if you are using
OnLine.

Behavior in Previous Releases

In previous releases, the medium and high modes included the functionality
of the low mode. Thus, when you ran the UPDATE STATISTICS statement in
medium or high modes, the functionality of the low mode was performed
automatically. This functionality consisted of constructing index information
and table information for the specified objects.

Behavior in This Release

In this release, the functionality of the low mode is still performed when you
run the UPDATE STATISTICS statement in medium or high modes. However,
you can specify the DISTRIBUTIONS ONLY option with the MEDIUM or HIGH
clauses to prevent the construction of index information for the specified
objects.

Table information is still constructed for the specified objects when you
specify the DISTRIBUTIONS ONLY option. The table information that is
constructed includes the number of pages used, the number of rows, and
fragment information.

The DISTRIBUTIONS ONLY option suppresses the construction of index infor-
mation but not the construction of table information for the following
reasons:

■ The table information is required to construct accurate distributions.

■ The construction of index information can take a considerable
amount of time, but the construction of table information requires
very little time and very few system resources.
3-132 Guide to 7.1 Feature Enhancements

UPDATE STATISTICS
Examples of UPDATE STATISTICS Statements

In the following example, the UPDATE STATISTICS statement gathers distri-
butions information, index information, and table information for the
customer table.

UPDATE STATISTICS MEDIUM FOR TABLE customer

However, in the following example, only distributions information and table
information are gathered for the customer table. The DISTRIBUTIONS ONLY
option prevents the construction of index information.

UPDATE STATISTICS MEDIUM FOR TABLE customer
DISTRIBUTIONS ONLY

Procedure for Updating Statistics
Informix recommends the following procedure for giving the optimizer the
best possible information while incurring the lowest performance penalty:

1. Run UPDATE STATISTICS in medium mode with the DISTRIBUTIONS
ONLY option for each table. (If you are the database owner or DBA
and you want to gather statistics for the entire database, you can do
that with a single command instead.). The default parameters are
sufficient unless the table is very large. In this case, use a resolution
of 1.00 and a confidence level of 0.99.

2. Run UPDATE STATISTICS in high mode for all columns that head an
index. For the fastest execution time of the UPDATE STATISTICS state-
ment, you must execute one UPDATE STATISTICS statement in the
high mode for each such column. In a future release, Informix will
remove this limitation.

3. For each multicolumn index, run UPDATE STATISTICS in low mode
for all its columns.

This procedure executes rapidly because it only constructs the index-
information statistics once for each index.
SQL Enhancements 3-133

Changed SQL Segments
Changed SQL Segments
The following SQL segments are changed in this release:

■ Aggregate Expression portion of the Expression segment

■ Identifier segment
3-134 Guide to 7.1 Feature Enhancements

Aggregate Expression
Aggregate Expression
An aggregate expression uses an aggregate function to summarize selected
database data. The following diagram shows the aggregate functions,
including three new functions: RANGE, STDEV, and VARIANCE.

Table
Name

see SQLS

()column
name

AVG

MAX

MIN

SUM

COUNT

DISTINCT

AVG

MAX

MIN

SUM

(

ALL

Expression
(Subset)

see SQLS

)

.

COUNT (*)

Synonym
Name

see SQLS

.

View
Name

see SQLS

.

(

UNIQUE

DISTINCT

UNIQUE

STDEV

VARIANCE

RANGE
SQL Enhancements 3-135

Aggregate Expression
The Informix Guide to SQL: Syntax and the Informix Guide to SQL: Tutorial
describe the general behavior and restrictions of aggregate expressions.

The following functions are added to the aggregate expression portion of the
Expression segment:

■ Range (RANGE)

■ Standard Deviation (STDEV)

■ Variance (VARIANCE)

Important: All computations for the RANGE, STDEV, and VARIANCE functions are
performed in 32-digit precision, which should be sufficient for many sets of input
data. The computation, however, loses precision or returns wrong results when all of
the input data values have 16 or more digits of precision.

Element Purpose Restrictions Syntax

column name The name of the column to
which the specified aggregate
function is applied. See
“Summary of Aggregate
Function Behavior” in the
Informix Guide to SQL: Syntax
for an example showing how
each keyword that precedes
column name performs a different
calculation on the data values in
column name.

If you specify an aggregate
expression and one or more
columns in the SELECT clause of
a SELECT statement, you must
put all the column names that
are not used within the
aggregate expression or a time
expression in the GROUP BY
clause. You cannot apply an
aggregate function to a BYTE or
TEXT column. See “Subset of
Expressions Allowed in an
Aggregate Expression” in the
Informix Guide to SQL: Syntax
for other general restrictions. For
restrictions that depend on the
keywords that precede column
name, see the headings for
individual keywords in the
Informix Guide to SQL: Syntax.

Identifier, Informix
Guide to SQL:
Syntax
3-136 Guide to 7.1 Feature Enhancements

Aggregate Expression
RANGE Function
The RANGE function computes the range for a sample of a population. It
computes the difference between the maximum and the minimum values, as
follows:

range(expr) = max(expr) - min(expr)

You can apply the RANGE function only to numeric columns. The following
query finds the range of ages for a population:

SELECT RANGE(age) FROM u_pop

As with other aggregates, the RANGE function applies to the rows of a group
when the query includes a GROUP BY clause, as shown in the following
example:

SELECT RANGE(age) FROM u_pop
GROUP BY birth

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the RANGE function returns a null for that column.

STDEV Function
The STDEV function computes the standard deviation for a sample of a
population. It is the square root of the VARIANCE function.

You can apply the STDEV function only to numeric columns. The following
query finds the standard deviation on a population:

SELECT STDEV(age) FROM u_pop WHERE u_pop.age > 0

As with the other aggregates, the STDEV function applies to the rows of a
group when the query includes a GROUP BY clause, as shown in the following
example:

SELECT STDEV(age) FROM u_pop
GROUP BY birth
WHERE STDEV(age) > 0

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the STDEV function returns a null for that column.
SQL Enhancements 3-137

Aggregate Expression
VARIANCE Function
The VARIANCE function returns the variance for a sample of values as an
unbiased estimate of the variance of the population. It computes the
following value:

(SUM(Xi**2) - SUM(Xi)**(2/N))/(N-1)

In this example, Xi is each value in the column and N is the total number of
values in the column. You can apply the VARIANCE function only to numeric
columns. The following query finds the variance on a population:

SELECT VARIANCE(age) FROM u_pop WHERE u_pop.age > 0

As with the other aggregates, the VARIANCE function applies to the rows of
a group when the query includes a GROUP BY clause, as shown in the
following example:

SELECT VARIANCE(age) FROM u_pop
GROUP BY birth
WHERE VARIANCE(age) > 0

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the VARIANCE function returns a null for that column.
3-138 Guide to 7.1 Feature Enhancements

Identifier Segment
Identifier Segment
The Identifier segment is changed in this release.

■ Delimited identifiers are no longer flagged as noncompliant with the
ANSI standard.

■ When you use the AS keyword as a workaround for an ambiguous
nondelimited identifier used as a column label, the AS keyword is no
longer flagged as noncompliant with the ANSI standard.

Delimited Identifiers
When you specify the identifier segment within an SQL statement, the
database server interprets the identifier as a delimited identifier if you set the
DELIMIDENT environment variable and place double quotes around the
identifier. Delimited identifiers allow you to specify names for database
objects that are otherwise identical to SQL reserved words such as TABLE,
WHERE, and DECLARE.

As a result of modifications to the ANSI flagger used by Informix products,
delimited identifiers are no longer flagged as noncompliant with the ANSI
SQL-92 Entry Level Standard.

The following SELECT statement uses the delimited identifier "table" to
specify the name of the table from which data is retrieved. When you enter
this statement in DB-Access or use it in an ESQL/C or ESQL/COBOL program,
an ANSI noncompliance flag is longer be generated.

SELECT * FROM "table"
SQL Enhancements 3-139

Identifier Segment
Workarounds That Use the Keyword AS
Although you can use almost any word as an SQL identifier, syntactic
ambiguities can occur. Syntax errors are especially likely when you use a
reserved word as a nondelimited identifier. One workaround is to use the AS
keyword in the following situations:

■ You can use the AS keyword before the column label in the SELECT
clause of a SELECT statement. The column label is also known as the
display label.

■ You can use the AS keyword before the table alias in the FROM clause
of a SELECT statement.

As a result of modifications to the ANSI flagger used by Informix products,
the use of the AS keyword before a column label in SELECT statements is no
longer flagged as noncompliant with the ANSI SQL-92 Entry Level Standard.

The following SELECT statement uses the AS keyword before a column label.
When you enter this statement in DB-Access or use it in an ESQL/C or
ESQL/COBOL program, an ANSI non-compliance flag is no longer generated.

SELECT call_dtime AS minute FROM cust_calls

The use of the AS keyword before a table alias in SELECT statements is still
flagged to indicate ANSI noncompliance in this release.

The following SELECT statement uses the AS keyword before a table alias.
When you enter this statement in DB-Access or use it in an ESQL/C or
ESQL/COBOL program, an ANSI non-compliance flag is still generated in this
release.

SELECT * FROM mytab AS order
3-140 Guide to 7.1 Feature Enhancements

New and Changed System Catalog Tables
New and Changed System Catalog Tables
This section describes new and changed system catalog tables.

The following system catalog tables are new in this release:

■ sysfragauth

■ sysobjstate

■ sysroleauth

■ sysviolations

The following system catalog tables are changed in this release:

■ syscoldepend

■ sysconstraints

■ sysusers
SQL Enhancements 3-141

SYSCOLDEPEND
SYSCOLDEPEND
The syscoldepend system catalog table is changed in this release. Formerly
this system catalog table tracked only the table columns that are specified in
check constraints. Now this system catalog table also tracks the table
columns specified in not null constraints.

If a not null constraint is defined on one or more columns of a base table, one
row is created in the syscoldepend table for each column involved in the
constraint.

See the syscoldepend system catalog table in the Informix Guide to SQL:
Reference for a description of the columns in this table.
3-142 Guide to 7.1 Feature Enhancements

SYSCONSTRAINTS
SYSCONSTRAINTS
The sysconstraints system catalog table is changed in this release. Formerly
the database server did not treat not null specifications as formal constraints,
so not null specifications were not recorded in the sysconstraints table. Now
the database server treats not null specifications as formal constraints, so not
null specifications are recorded in the sysconstraints table.

How Not Null Constraints Are Named
Users can now assign names to not null specifications in CREATE TABLE and
ALTER TABLE statements. For further information on naming constraints, see
the CREATE TABLE and ALTER TABLE statements in this guide.

If the user does not assign a name to a not null specification, the database
server creates a name for the not null specification. System-generated names
for not null constraints follow the pattern for other internally generated
constraint names. This pattern consists of the letter n followed by the table
identifier, an underscore symbol, and a system-generated constraint
identifier.

For example, if the table on which the constraint is defined has the table
identifier 104, the system-generated name for a not null constraint on this
table might be n104_7.

New Code in the constrtype Column
A new code can now appear in the constrtype column of the sysconstraints
table to identify a not null constraint. Not null constraints have the letter N in
this column.
SQL Enhancements 3-143

SYSFRAGAUTH
SYSFRAGAUTH
The sysfragauth system catalog table is new in this release. It stores infor-
mation about the privileges granted on table fragments. The sysfragauth
system catalog table has the following columns:

If a code in the fragauth column is lowercase, the grantee cannot grant the
privilege to other users. If a code in the fragauth column is uppercase, the
grantee can grant the privilege to other users.

A composite index for the tabid, grantor, grantee, and fragment columns
allows only unique values. A composite index on the tabid and grantee
columns allows duplicate values.

The following example displays the fragment-level privileges for one base
table, as they appear in the sysfragauth system catalog table. Note that
grantee ted can grant the update, delete, and insert privileges to other users.

Column Name Type Explanation

grantor CHAR(8) Grantor of privilege

grantee CHAR(8) Grantee (receiver) of privilege

tabid INTEGER Table identifier. This column identifies the table
that contains the fragment named in the fragment
column.

fragment CHAR(18) Name of dbspace where fragment is stored. This
column identifies the fragment on which privileges
are granted.

fragauth CHAR(6) A 6-byte pattern that specifies fragment-level priv-
ileges (including 3 bytes reserved for future use).
This pattern contains one or more of the following
codes:

u = Update

i = Insert

d = Delete
3-144 Guide to 7.1 Feature Enhancements

SYSFRAGAUTH
For information on the statements that grant and revoke fragment-level
privileges on tables, see “GRANT FRAGMENT” on page 3-48 and “REVOKE
FRAGMENT” on page 3-70.

grantor grantee tabid fragment fragauth

dba dick 101 dbsp1 -ui---

dba jane 101 dbsp3 --i---

dba mary 101 dbsp4 --id--

dba ted 101 dbsp2 -UID--
SQL Enhancements 3-145

SYSOBJSTATE
SYSOBJSTATE
The sysobjstate system catalog table is new in this release. It stores informa-
tion about the state (object mode) of database objects. The types of database
objects listed in this table are indexes, triggers, and constraints.

Every index, trigger, and constraint in the database has a corresponding row
in the sysobjstate table if a user created the object. Indexes that the database
server created on the system catalog tables are not listed in the sysobjstate
table because their object mode cannot be changed.

The sysobjstate system catalog table has the following columns:

A composite index for the objtype, name, owner, and tabid columns allows
only unique values.

Column Name Type Explanation

objtype CHAR(1) The type of database object. This column has one of
the following codes:

C = Constraint

I = Index

T = Trigger

owner CHAR(8) The owner of the database object

name CHAR(18) The name of the database object

tabid INTEGER The table identifier. This column identifies the table
on which the database object is defined.

state CHAR(1) The current state (object mode) of the database
object. This column has one of the following codes:

D = Disabled

E = Enabled

F = Filtering, with no integrity-violation errors

G = Filtering, with integrity-violation errors
3-146 Guide to 7.1 Feature Enhancements

SYSROLEAUTH
SYSROLEAUTH
The sysroleauth system catalog table is new in this release. It describes the
roles granted to users. It contains one row for each role granted to a user in
the database. The sysroleauth system catalog table has the following
columns:

The rolename and grantee columns are indexed and allow only unique
values. The is_grantable column indicates whether the role was granted with
the WITH GRANT OPTION on the GRANT statement.

Column Name Type Explanation

rolename CHAR(usersize) Name of the role

grantee CHAR(usersize) Name of the user that is granted the role

is_grantable CHAR(1) Specifies whether the role is grantable:

Y = Grantable

N = Not grantable
SQL Enhancements 3-147

SYSUSERS
SYSUSERS
The sysusers system catalog table is changed in this release. It describes each
set of privileges granted in the database. It contains one row for each user
who is granted privileges in the database. The sysusers system catalog table
has the following columns:

The username column is indexed and allows only unique values. The
username can be the name of a role.

Column Name Type Explanation

username CHAR(8) Name of the user or role

usertype CHAR(1) Specifies the privileges:

D = DBA (all privileges)

R = Resource (create permanent tables and
indexes)

C = Connect (work within existing tables)

G = Role

priority SMALLINT Reserved for future use

password CHAR(16) Reserved for future use
3-148 Guide to 7.1 Feature Enhancements

SYSVIOLATIONS
SYSVIOLATIONS
The sysviolations system catalog table is new in this release. It stores infor-
mation about the violations and diagnostics tables for base tables. Every table
in the database that has a violations and diagnostics table associated with it
has a corresponding row in the sysviolations table. The sysviolations data-
base table has the following columns:

The primary key of the sysviolations table is the targettid column. Unique
indexes are also defined on the viotid and diatid columns.

Column Name Type Explanation

targettid INTEGER Table identifier of the target table. The target table
is the base table on which the violations and diag-
nostics tables are defined.

viotid INTEGER Table identifier of the violations table.

diatid INTEGER Table identifier of the diagnostics table.

maxrows INTEGER The value in this column signifies the maximum
number of rows that can be inserted into the diag-
nostics table during a single insert, update, or
delete operation on a target table that has a filtering
mode object defined on it.

 The value in this column also signifies the maxi-
mum number of rows that can be inserted into the
diagnostics table during a single operation that
enables a disabled object or sets a disabled object to
filtering mode (provided that a diagnostics table
exists for the target table).

If no maximum has been specified for the diagnos-
tics table, this column contains a null value.
SQL Enhancements 3-149

New and Changed Environment Variables
New and Changed Environment Variables
This section describes new and changed environment variables.

The following environment variables are new in this release:

■ INFORMIXOPCACHE

■ INFORMIXSQLHOSTS

■ NODEFDAC

The following environment variables are changed in this release:

■ OPTCOMPIND

■ PSORT_NPROCS
3-150 Guide to 7.1 Feature Enhancements

INFORMIXOPCACHE
INFORMIXOPCACHE
The INFORMIXOPCACHE environment variable allows you to specify the
size of the memory cache for the Optical StageBlob area of the client
application.

You set the INFORMIXOPCACHE environment variable by specifying the size
of the memory cache in kilobytes. The size that you specify must be equal to
or smaller than the size of the system-wide configuration parameter,
OPCACHEMAX. If you do not set the INFORMIXOPCACHE environment
variable, the default cache size is 128 kilobytes or the size specified in the
configuration parameter OPCACHEMAX. The default for OPCACHEMAX is
128 kilobytes. If you set INFORMIXOPCACHE to a value of 0,
INFORMIX-OnLine/Optical does not use the cache.

INFORMIXOPCACHE kilobytessetenv

kilobytes specifies the value you set for the optical memory cache.
Must be equal to or smaller than the size of the system-
wide configuration parameter, OPCACHEMAX.
SQL Enhancements 3-151

INFORMIXSQLHOSTS
INFORMIXSQLHOSTS
The INFORMIXSQLHOSTS environment variable specifies the full pathname
and filename of a file that contains connectivity information.

When the INFORMIXSQLHOSTS environment variable is set, the client or
database server looks in the specified file for connectivity information. When
the INFORMIXSQLHOSTS environment variable is not set, the client or
database server looks in the $INFORMIXDIR/etc/sqlhosts file.

The file specified in the INFORMIXSQLHOSTS environment variable has the
same format as the $INFORMIXDIR/etc/sqlhosts file. For a description of the
$INFORMIXDIR/etc/sqlhosts file, see the INFORMIX-OnLine Dynamic Server
Administrator’s Guide.

For example, to specify that the client or database server will look for connec-
tivity information in the mysqlhosts file in the /work/envt directory, enter
the following command:

setenv INFORMIXSQLHOSTS /work/envt/mysqlhosts

INFORMIXSQLHOSTS pathnamesetenv

pathname specifies the full pathname and filename of the file that
contains connectivity information.
3-152 Guide to 7.1 Feature Enhancements

NODEFDAC
NODEFDAC
When set to yes, the NODEFDAC environment variable prevents default
table privileges (Select, Insert, Update, and Delete) from being granted to
PUBLIC when a new table is created in a database that is not ANSI-compliant.

yes prevents default table privileges from being granted to PUBLIC
on new tables in a database that is not ANSI-compliant. This
setting also prevents the Execute privilege for a new stored
procedure from being granted to PUBLIC when the stored pro-
cedure is created in owner mode.

no allows default table privileges to be granted to PUBLIC. Also
allows the Execute privilege on a new stored procedure to be
granted to PUBLIC when the stored procedure is created in
owner mode.

NODEFDAC yessetenv

no
SQL Enhancements 3-153

OPTCOMPIND
OPTCOMPIND
The OPTCOMPIND environment variable indicates the preferred join
method. This environment variable has no default value. It is either set or not
set. When the OPTCOMPIND environment variable is not set, OnLine uses an
algorithm to determine the preferred join method. The algorithm that OnLine
uses has changed in this release.

When the OPTCOMPIND environment variable is not set, OnLine uses the
value specified for the ONCONFIG configuration parameter OPTCOMPIND.
When neither the environment variable nor the configuration parameter is
set, the default value is 2. Previously, the default value was 0.
3-154 Guide to 7.1 Feature Enhancements

PSORT_NPROCS
PSORT_NPROCS
The PSORT_NPROCS environment variable has a new consideration
concerning memory, changed information about default values for ordinary
sorts, and new information about default values for attached indexes.

Checking Available Memory Before Sorts
The PSORT_NPROCS environment variable enables OnLine to improve the
performance of the parallel-process sorting package by allocating more
threads for sorting. Before the sorting package performs a parallel sort, make
sure that OnLine has enough memory for the sort.

Users sometimes perform large-scale sorts, such as index builds, without
setting the PDQPRIORITY environment variable. If the PDQPRIORITY
environment variable is not set, OnLine allocates the minimum amount of
memory to sorts. This minimum memory is not enough to start even two sort
threads. If you have not set the PDQPRIORITY environment variable, check
the available memory before you perform a sort and make sure that you have
enough memory for a large-scale sort.

Default Values for Ordinary Sorts
If the PSORT_NPROCS environment variable is set, OnLine uses the specified
number of sort threads as an upper limit for ordinary sorts.

If PSORT_NPROCS is not set, parallel sorting does not take place. OnLine
uses one thread for the sort.

If PSORT_NPROCS is set to zero (0), OnLine uses three threads for the sort.
SQL Enhancements 3-155

PSORT_NPROCS
Default Values for Attached Indexes
The default number of threads is different for attached indexes.

If the PSORT_NPROCS environment variable is set, you get the specified
number of sort threads for each fragment of the index that is being built.

If the PSORT_NPROCS environment variable is not set, or if it is set to zero,
you get two sort threads for each fragment of the index unless you have a
single-CPU virtual processor. If you have a single-CPU virtual processor, you
get one sort thread for each fragment of the index.
3-156 Guide to 7.1 Feature Enhancements

Changed Utilities
Changed Utilities
This section describes changed SQL utilities.

The following utilities are changed in this release:

■ dbexport

■ dbload

■ dbschema
SQL Enhancements 3-157

The dbexport Utility
The dbexport Utility
The dbexport utility is changed in this release.

Support for Roles
The schema file created by the dbexport utility has been extended to contain
the statement CREATE ROLE, the extension to the GRANT statement that
permits roles to be granted to users and other roles, and the granting of privi-
leges to roles.

Support for Object Modes and Violation Detection
This release includes the following changes to the dbexport utility to support
the new object modes and violation-detection functionality:

■ In the output of dbexport, the names of not null constraints now
appear after the not null specifications. This change is necessary
because you can use the output of the utility as input to create
another database. If the same names are not used for not null
constraints in both databases, problems could result.

■ The output of dbexport now shows the object mode of objects that
are in the disabled state. These objects can be constraints, triggers, or
indexes.

■ The output of dbexport now shows the object mode of objects that
are in the filtering state. These objects can be constraints or unique
indexes.

■ The output of dbexport now shows the violations and diagnostics
tables associated with a base table (if violations and diagnostics
tables have been started for the base table).

For more information about the new object modes and violation-detection
functionality in this release, see the following statements in this guide: SET,
START VIOLATIONS TABLE, and STOP VIOLATIONS TABLE.
3-158 Guide to 7.1 Feature Enhancements

The dbload Utility
The dbload Utility
The dbload utility is changed in this release. The -k option is new, and the
-r option has a new restriction.

The dbload syntax includes a new -k option. In addition, the functionality of
the existing -r option has been revised to accommodate the new -k option.
Descriptions of these options follow. For explanations of the other dbload
options, see the dbload utility in the Informix Guide to SQL: Reference.

Batch Size
see SQLR

Load Start
Point

see SQLR

Bad-Row
Limits

see SQLR

dbload -d database

Command-File
Syntax Check

see SQLR

-X

-c command file

-l error log file

-r

-V

-k
SQL Enhancements 3-159

The dbload Utility
-k The -k option instructs dbload to lock the tables listed in the
command file in exclusive mode during the load operation. If
you do not specify the -k option, the tables specified in the
command file are locked in shared mode. When tables are
locked in shared mode, the database server still has to acquire
exclusive row or page locks when it inserts rows into the table.
When you specify the -k option, the database server places an
exclusive lock on the entire table. The -k option increases per-
formance for large loads because the database server does not
have to acquire exclusive locks on rows or pages as it inserts
rows during the load operation.
Table locking in exclusive mode reduces the number of locks
needed during the load operation but reduces concurrency. If
you are planning to load a large number of rows, use exclusive
table locking and perform the load during nonpeak hours.
You cannot use the -k option with the -r option because the
-r option specifies that no tables are locked during the load
operation.

-r The -r option instructs dbload not to lock the tables during
loading, enabling other users to update data in the tables dur-
ing the load operation.
If you do not specify the -r option, the tables specified in the
command file are locked in shared mode during loading so
that other users cannot update data in the tables. However,
you can override this default locking mode by specifying the
-k option. The -k option instructs dbload to lock the tables in
exclusive mode rather than shared mode during the load
operation.
You cannot use the -r option with the -k option because the
-r option specifies that the tables are not locked during the load
operation while the -k option specifies that the tables are
locked in exclusive mode.
3-160 Guide to 7.1 Feature Enhancements

The dbschema Utility
The dbschema Utility
The dbschema utility is changed in this release. The dbschema utility has
been extended to display the SQL statements (the schema) required to
replicate a role (as well as to replicate a database or a specific table, view, or
procedure). In addition, the utility now supports object modes, violation
detection, and fragment authorization. The entire description of the
dbschema utility is included here.

Usage
You can use the dbschema utility for the following purposes:

■ To display the SQL statements (the schema) required to replicate a
database or a specific table, view, or procedure

■ To display the schema for the Information Schema views

■ To display the distribution information stored for one or more tables
in the database

■ To display the SQL statements (the schema) required to replicate a
role (as well as to replicate a database or a specific table, view, or
procedure).
SQL Enhancements 3-161

The dbschema Utility
Tables, Views, or
Procedures

p. 3-167

Synonyms
p. 3-165

Privileges
p. 3-165

dbschema

 filename

-hd

all

Table Name
See SQLS

-V

 -ss

-d database

Roles
p. 3-168

all directs dbschema to include all the tables in the data-
base in the display of distributions.

-d database specifies the database to which the schema applies. The
database can be on a remote database server. If you
want to use more than the simple name of the database,
refer to the Database Name segment in Chapter 1 of the
Informix Guide to SQL: Syntax.

filename specifies the filename to contain the dbschema output.
If you do not supply a filename, dbschema sends output
to the screen. If you do supply a filename, dbschema cre-
ates a file to contain the dbschema output and gives it
the name you specify.

-hd displays the distribution as data values. See “Display-
ing the Distribution Information for Tables” on
page 3-169.
3-162 Guide to 7.1 Feature Enhancements

The dbschema Utility
You must be the DBA or have the Connect or Resource privilege to the
database before you can run dbschema on it. If you are using SE, the database
must exist in your current directory or in a directory cited in your DBPATH
environment variable.

When the NLS environment variables are set correctly, as described in
Chapter 4, “Environment Variables,” of the Informix Guide to SQL: Reference,
dbschema can handle foreign characters and NLS databases.

You can use delimited identifiers with the dbschema utility. The utility
detects database objects that are keywords, mixed case, or have special
characters and places double quotes around them.

Creating the Schema for a Database
You can create the schema for an entire database or for a portion of the
database. The options for dbschema allow you to perform the following
actions:

■ Display CREATE SYNONYM statements by owner, for a specific table,
or for the entire database.

■ Display the CREATE TABLE, CREATE VIEW, or CREATE PROCEDURE
statements for a specific table or for the entire database.

■ Display all GRANT privilege statements that affect a specified user or
that affect all users for a database or a specific table.

-ss generates server-specific information for a table speci-
fied in previous options. This option is ignored if no
table schema is generated. In INFORMIX-SE, the -ss
option generates the pathname where the table was cre-
ated if the table is not in the database directory. In
OnLine, the -ss option always generates the lock mode,
extent sizes, and the dbspace name if the dbspace name
is different from the database dbspace. In addition, if
tables are fragmented, the -ss option displays informa-
tion about the fragmentation strategy.

-V displays product version information.
SQL Enhancements 3-163

The dbschema Utility
Using dbschema and specifying only the database name is equivalent to
using dbschema with all its options (except for the -hd and -ss options). In
addition, if Information Schema views have been created for the database,
this schema is shown. For example, the following two statements are
equivalent:

dbschema -d stores7
dbschema -s all -p all -t all -f all -d stores7

The SERIAL fields included in CREATE TABLE statements displayed by
dbschema do not specify a starting value. New SERIAL fields created using
the schema file have a starting value of one, regardless of their starting value
in the original database. If this is not acceptable, you must modify the schema
file.

Creating Schemas for Databases Across a Network

You can specify a database on any accessible OnLine database server using
the syntax in the database name. You can specify a database on another SE
database server by including the database server name and directory path
with the database name.

The command shown in the following example displays the schema for the
stores7 database in the turku directory on the finland database server:

dbschema -d //finland/turku/stores7

Owner Naming with dbschema

The dbschema utility uses the owner.object convention when it generates any
CREATE TABLE, CREATE INDEX, CREATE SYNONYM, CREATE VIEW, CREATE
PROCEDURE, or GRANT statements, and when it reproduces any unique, ref-
erential, or check constraints. As a result, if you use the dbschema output to
create a new object (table, index, view, procedure, constraint, or synonym),
the owner of the original object owns the new object. To change the owner of
the new object, you must edit the dbschema output before you run it as an
SQL script.

For more information about the CREATE TABLE, CREATE INDEX, CREATE
SYNONYM, CREATE VIEW, CREATE PROCEDURE, and GRANT statements, see
the Informix Guide to SQL: Syntax.
3-164 Guide to 7.1 Feature Enhancements

The dbschema Utility
Obtaining the Synonym Schema

Output from dbschema that is executed with the specified option -s alice
might appear, as shown in the following example:

CREATE SYNONYM 'alice'.cust FOR 'alice'.customer

For more information about the CREATE SYNONYM statement, see the
Informix Guide to SQL: Syntax.

Obtaining the Privilege Schema

The syntax for obtaining the privilege schema has been extended to display
privilege information for roles.

Synonyms

ownername-s

all

-s ownername directs dbschema to display the CREATE SYNONYM
statements owned by ownername.

-s all directs dbschema to display all CREATE SYNONYM
statements for the database, table, or view specified.

Privileges

all

 -p user
SQL Enhancements 3-165

The dbschema Utility
You cannot specify a list of users or roles with the -p option. You can specify
either one user or role, or all users and roles.

The following dbschema command and output show the privileges that
were granted for the calen role:

sharky% dbschema -p calen -d stores7

In the dbschema output, the AS keyword indicates the grantor of a GRANT
statement. The following example output indicates that norma issued the
GRANT statement:

GRANT ALL ON 'tom'.customer TO 'claire' AS 'norma'

When the GRANT and AS keywords appear in the dbschema output, you
might need to grant privileges before you run the dbschema output as an
SQL script. Referring to the previous output line, the following conditions
must be true before you can run the statement as part of a script:

■ norma must have the Connect privilege to the database.

■ norma must have all privileges WITH GRANT OPTION for the table
tom.customer.

For more information about the GRANT statement, see the Informix Guide to
SQL: Syntax.

-p user displays the GRANT statements that grant privileges to a user,
where user can be a user name or a role name. You can specify
only one user or role.

-p all displays the GRANT statements that grant privileges to all
users for the table or view specified, or to all roles for the table
specified.

DBSCHEMA Schema Utility INFORMIX-SQL Version 7.10
Copyright (C) Informix Software, Inc., 1984-1995
Software Serial Number RDS#N000000

grant alter on table1 to 'calen'
3-166 Guide to 7.1 Feature Enhancements

The dbschema Utility
Specifying a Table, View, or Procedure

For more information about the CREATE PROCEDURE statement, see the
Informix Guide to SQL: Syntax.

Tables,
Views, or

Procedures

-t table name procedure name-f

all

all

view name

-f all directs dbschema to limit the SQL statement output to
the statements that are needed to replicate all
procedures.

-f procedure name directs dbschema to limit the SQL statement output to
only the statements that are needed to replicate the
specified procedure.

-t table name directs dbschema to limit the SQL statement output to
only the statements that are needed to replicate the
specified table.

-t view name directs dbschema to limit the SQL statement output to
only the statements that are needed to replicate the
specified view.

-t all directs dbschema to include in the SQL statement
output all statements that are needed to replicate all
tables and views.
SQL Enhancements 3-167

The dbschema Utility
Obtaining the Role Schema

The syntax of the dbschema utility has been extended to support roles.

You cannot specify a list of users or roles with the -r option. You can specify
either one role, or all roles.

The following dbschema command and output show that the role calen was
created and was granted to cathl, judith, and sallyc:

sharky% dbschema -r calen -d stores7

-r role directs dbschema to display the CREATE ROLE and GRANT
statements that are needed to replicate and grant the specified
role.

-r all directs dbschema to display all CREATE ROLE and GRANT
statements that are needed to replicate and grant all of the
roles.

Roles

all

 -r role

DBSCHEMA Schema Utility INFORMIX-SQL Version 7.10
Copyright (C) Informix Software, Inc., 1984-1995
Software Serial Number RDS#N000000
create role calen;

grant calen to cathl with grant option;
grant calen to judith ;
grant calen to sallyc ;
3-168 Guide to 7.1 Feature Enhancements

The dbschema Utility
Using the -ss Option to Obtain Table Information

When you use the -ss option, you can retrieve information about fragmented
tables, the lock mode, and extent sizes.

The following dbschema output shows the expressions specified for a
fragmented table:

Displaying the Distribution Information for Tables
To display the distribution information stored for a table in a database, use
the -hd option with the name of the table. If you specify the ALL keyword for
the table name, the distributions for all the tables in the database are
displayed.

Distribution information is stored only if the UPDATE STATISTICS...MEDIUM
or HIGH statement has been run for one or more columns of a table.

The output of dbschema for distributions is provided in the following parts:

■ Distribution description

■ Distribution information

■ Overflow information

Each section provided by dbschema is explained in the following sections. As
an example, the discussion uses the following distribution for the fictional
table called invoices. This table contains 165 rows, including duplicates.

DBSCHEMA Schema Utility INFORMIX-SQL Version 7.10
Copyright (C) Informix Software, Inc., 1984-1995
{ TABLE “sallyc”.t1 row size = 8 number of columns = 1 index size = 0 }
create table “sallyc”.t1
(
c1 integer
) fragment by expression
(c1 < 100) in db1 ,
((c1 >= 100) AND (c1 < 200)) in db2 ,
remainder in db4
extent size 16 next size 16 lock mode page;
revoke all on “sallyc”.t1 from “public”;
SQL Enhancements 3-169

The dbschema Utility
The output for this discussion can be generated with a call to dbschema that
is similar to the following example:

sharky% dbschema -hd invoices -d pubs_stores7

Distribution Description

The first part of the dbschema output describes which data distributions
have been created for the specified table. The name of the table is stated in the
following example:

Distribution for cathl.invoices.invoice_num

The output is for the invoices table, which is owned by the user cathl. The
particular column being described by this data distribution is invoice_num.
If a table has distributions built on more than one column, dbschema lists the
distributions for each column separately.

DBSCHEMA Schema Utility INFORMIX-SQL Version 7.1
Copyright (C) Informix Software, Inc., 1984-1995
{

Distribution for cathl.invoices.invoice_num

Constructed on 03/10/1995

High Mode, 10.000000 Resolution

--- DISTRIBUTION ---

 (5)
 1: (16, 7, 11)
 2: (16, 6, 17)
 3: (16, 8, 25)
 4: (16, 8, 38)
 5: (16, 7, 52)
 6: (16, 8, 73)
 7: (16, 12, 95)
 8: (16, 12, 139)
 9: (16, 11, 182)
 10: (10, 5, 200)

--- OVERFLOW ---

 1: (5, 56)
 2: (6, 63)
}

3-170 Guide to 7.1 Feature Enhancements

The dbschema Utility
The date on which the distributions are constructed is listed. In this example,
it is 03/10/1994, which is the date when the UPDATE STATISTICS statement
that generated the distributions was executed. You can use this date to tell
how outdated your distributions are. Although the system records the date,
it does not record the time.

The last line of the description portion of the output describes the mode
(medium or high) in which the distributions were created, and the resolution.
If you create the distributions with medium mode, the confidence of the sam-
ple is also listed. For example, if the UPDATE STATISTICS statement is exe-
cuted with High mode with a resolution of 10, the last line appears as shown
in the following example:

High Mode, 10.000000 Resolution

The Distribution Information

The distribution information describes the bins created for the distribution,
the range of values in the table and in each bin, and the number of distinct
values in each bin. Consider the following example:

 (5)
 1: (16, 7, 11)
 2: (16, 6, 17)
 3: (16, 8, 25)
 4: (16, 8, 38)
 5: (16, 7, 52)
 6: (16, 8, 73)
 7: (16, 12, 95)
 8: (16, 12, 139)
 9: (16, 11, 182)
 10: (10, 5, 200)

The first value shown in the rightmost column is the smallest value in the
table in this column. In this example, it is 5.

The column on the left shows the bin number, in this case 1 through 10. The
first number in the parentheses shows how many values are in the bin. For
this table, 10 percent of the total number of rows (165) is, rounded down, 16.
The first number is the same for all the bins except for the last. The last row
might have a smaller value, indicating that it does not have as many row val-
ues. In this example, all the bins contain 16 rows except the last one, which
contains 10.
SQL Enhancements 3-171

The dbschema Utility
The middle column within the parentheses indicates how many distinct val-
ues are contained in this bin. Thus, if there are 11 distinct values for a 16-value
bin, it implies that 1 or more of those values are duplicated at least once.

The right column within the parentheses is the highest value in the bin. The
highest value in the last bin is also the highest value in the table. For this
example, the highest value in the last bin is 200.

The Overflow Information

The last portion of the dbschema output shows values that have many dupli-
cates. The number of duplicates of indicated values must be greater than a
critical amount that is determined as approximately 25 percent of the resolu-
tion times the number of rows. If left in the general distribution data, they
would skew the distribution, so they are moved from the distribution to a
separate list, as shown in the following example:

OVERFLOW ---

1: (5, 56)
2: (6, 63)

For this example, the critical amount is 0.25 ∗ 0.10 ∗ 165, or 4.125. Therefore,
any value that is duplicated five or more times is listed in the overflow
section. Two values in this distribution are duplicated five or more times in
the table. The value 56 is duplicated five times and the value 63 is duplicated
six times.
3-172 Guide to 7.1 Feature Enhancements

The dbschema Utility
Support for Object Modes and Violation Detection
The following changes have been made to the output of dbschema to support
the new object modes and violation-detection functionality in this release:

■ The output now shows the names of not null constraints after the not
null specifications. This change is necessary because you can use the
output of the utility as input to create another database. If the same
names were not used for not null constraints in both databases,
problems could result.

■ The output now shows the object mode of objects that are in the
disabled state. These objects can be constraints, triggers, or indexes.

■ The output now shows the object mode of objects that are in the
filtering state. These objects can be constraints or unique indexes.

■ The output now shows the violations and diagnostics tables that are
associated with a base table (if violations and diagnostics tables have
been started for the base table).

For more information about the new object modes and violation detection
functionality in this release, see the following statements in this guide: SET,
START VIOLATIONS TABLE, and STOP VIOLATIONS TABLE.

Support for Fragment Authorization
The output of dbschema has been changed to support the new fragment-
authorization functionality in this release.

When you specify the -p or -ss option, the output now displays any GRANT
FRAGMENT statements that are issued for a particular user or in the entire
schema.

For more information about the new fragment authorization functionality in
this release, see the following statements in this guide: GRANT FRAGMENT
and REVOKE FRAGMENT.
SQL Enhancements 3-173

Changes to the SQL Communications Area
Changes to the SQL Communications Area
This section describes changes to the SQL Communications Area (SQLCA).

The sqlwarn array within the SQLCA is changed in this release.
3-174 Guide to 7.1 Feature Enhancements

SQLWARN Array
SQLWARN Array
This release includes changes to the SQLWARN array in the SQL Communica-
tions Area (SQLCA). For operations other than opening or connecting to a
database, the sqlwarn1 and sqlwarn3 fields of this array are now set to W in
the following situations:

■ The sqlwarn1 field is now set to W when a REVOKE statement with
the ALL keyword does not revoke all seven table-level privileges.

■ The sqlwarn3 field is now set to W when a GRANT statement with the
ALL keyword does not grant all seven table-level privileges.

The following list summarizes the complete behavior of the sqlwarn1 and
sqlwarn3 fields for operations other than opening or connecting to a
database:

The italicized text in this list signifies behavior that is new in this release.

sqlwarn1 This field is set to W when a column value is truncated as it is
fetched into a host variable. This field is also set to W when a
REVOKE statement with the ALL keyword does not revoke all
table-level privileges.

sqlwarn3 This field is set to W when, on a SELECT or on opening a cursor,
the number of items in the select list is not the same as the
number of host variables given in the INTO clause to receive
them. This field is also set to W when a GRANT statement with the
ALL keyword does not grant all table-level privileges.
SQL Enhancements 3-175

4
Chapter
ON-Archive Feature
Enhancements
Understanding ON-Archive Enhancements and Changes 4-3
Features Added to ON-Archive 4-3
Change to PRIVILEGE Parameter 4-4

Using New ON-Archive Qualifiers 4-4
Using the IMMEDIATE Qualifier 4-4
Using the NOIMMEDIATE Qualifier 4-5
Using the AUTOVOP Qualifier 4-6
Using the NOAUTOVOP Qualifier 4-7

Using Command Qualifiers with Each Other 4-7

New ON-Archive Command 4-8

Using Enhanced ON-Archive Utilities 4-8
Utility Enhancement for onautovop. 4-9
Utility Enhancements That Automatically Start oncatlgr 4-9
Interrupt Enhancement to the ondatartr Utility 4-10

Automating Backups Using an Event Alarm Script 4-10
Understanding the Sample Script 4-11

Adding an ON-Archive Activity Log to Log Archive Events 4-12
Using the ON-Archive Activity Log. 4-13

Change to the PRIVILEGE Configuration Parameter 4-15

ARCHIVE and BACKUP Qualifiers 4-15

4-2 Guid
ON-Archive Syntax Enhancements 4-21
The COPY/VSET and COPY/VSET/REQUEST Commands . . . 4-21
The LIST/RECOVERY Command 4-26
The MODIFY/COMMAND Command 4-29
RETRIEVE/DBSPACESET Command 4-33
The RETRIEVE/LOGFILE Command 4-36
e to 7.1 Feature Enhancements

This chapter contains information about the enhancements for
ON-Archive introduced in this release. The new and changed features sim-
plify database administration.

Understanding ON-Archive Enhancements and
Changes
ON-Archive is a recovery and backup system that enables you to back up data
and subsequently restore it if your current data becomes corrupt or inacces-
sible. The causes of data corruption or loss can range from a program error to
a disk crash to a disaster that damages the entire facility. ON-Archive enables
you to recover data that you have lost due to mishaps. For information about
ON-Archive, see the INFORMIX-OnLine Dynamic Server Archive and Backup
Guide. The following sections describe the new features and changes to
ON-Archive.

Features Added to ON-Archive
■ Four new qualifiers, IMMEDIATE, NOIMMEDIATE, AUTOVOP,

and NOAUTOVOP, are now added to the ARCHIVE, BACKUP,
COPY/REQUEST, COPY/VSET, MODIFY/COMMAND,
RETRIEVE/DBSPACESET, and RETRIEVE/LOGFILE commands.

■ A new command, LIST/RECOVERY, is added to the onarchive utility.
The LIST/RECOVERY command generates a report that provides
recovery information.

■ The onautovop utility can now execute a specific request.

■ When you invoke the onautovop and onarchive utilities, the
oncatlgr utility automatically executes.
ON-Archive Feature Enhancements 4-3

Change to PRIVILEGE Parameter
■ A sample script is now part of the ON-Archive product. When you
write programs, you can use this sample script as a model for pro-
grams that catch log-full event alarms for automated backups of log-
ical logs.

■ When you use the ondatartr utility, you now have the option to pro-
ceed with, or cancel, an interruption of a logical restore when you
press CTRL-C.

■ You can add an ON-Archive activity log for the ARCHIVE, BACKUP,
and RESTORE commands. This log allows you to log activities asso-
ciated with those events.

Change to PRIVILEGE Parameter
The ON-Archive PRIVILEGE parameter, one of several ON-Archive security
features, no longer supports OWNER mode.

Using New ON-Archive Qualifiers
The following new qualifiers are added to some of the onarchive utility
commands:

■ IMMEDIATE

■ NOIMMEDIATE

■ AUTOVOP

■ NOAUTOVOP

Using the IMMEDIATE Qualifier
The IMMEDIATE qualifier saves time by allowing you to create and execute a
request using a single command.

In earlier versions of ON-Archive, when you invoked the
ARCHIVE, BACKUP, COPY/REQUEST, COPY/VSET, MODIFY/COMMAND,
RETRIEVE/DBSPACESET, or RETRIEVE/LOGFILE commands, you created a
request entry in the archive catalog for that command. Then, ON-Archive
displayed the request ID associated with that request entry.
4-4 Guide to 7.1 Feature Enhancements

Using the NOIMMEDIATE Qualifier
Now, when you specify IMMEDIATE, ON-Archive displays the request ID and
immediately executes the request.

Example

The following example shows how to use the IMMEDIATE qualifier in the
ARCHIVE command at the onarchive command-line prompt:

ARCHIVE/DBSPACESET=dbset1/VSET=arcvset/IMMEDIATE

The example shows how to archive of the dbset1 dbspaceset and set the
arcvset volume immediately.

Using the NOIMMEDIATE Qualifier
The NOIMMEDIATE qualifier is the default setting for the ARCHIVE,
BACKUP, COPY/VSET, MODIFY/COMMAND, RETRIEVE/DBSPACESEST, or
RETRIEVE/LOGFILE commands. If you do not specify the IMMEDIATE quali-
fier in those onarchive commands, the commands default to NOIMMEDIATE.
The NOIMMEDIATE qualifier ensures that those commands function as in ear-
lier versions.

Typically, you do not need to specify the NOIMMEDIATE qualifier. However,
if you specify IMMEDIATE in a personal default file, the NOIMMEDIATE qual-
ifier allows you to override the IMMEDIATE setting to ensure that the affected
onarchive commands function as in earlier versions.

Example

The following example shows how to use the NOIMMEDIATE qualifier in the
ARCHIVE command at the onarchive command-line prompt:

ARCHIVE/DBSPACESET=dbset1/VSET=arcvset/NOIMMEDIATE

The example shows how to archive the dbset1 dbspaceset and the arcvset
volume set with no immediate execution of the ARCHIVE request.
ON-Archive Feature Enhancements 4-5

Using the AUTOVOP Qualifier
Using the AUTOVOP Qualifier
You use the AUTOVOP qualifier when you want to proceed to other tasks
without waiting for a request to finish. The AUTOVOP qualifier simplifies the
execution of requests by allowing you to take the following actions:

1. Use the onautovop utility to satisfy requests

2. Proceed to other tasks without waiting for a request to finish.

In earlier versions of ON-Archive, when you invoked the
ARCHIVE, BACKUP, COPY/REQUEST, COPY/VSET, MODIFY/COMMAND,
RETRIEVE/DBSPACESEST, or RETRIEVE/LOGFILE commands, you created a
request entry in the archive catalog for that command. Then, ON-Archive dis-
played the request ID associated with that request entry.

Now, when you specify the AUTOVOP qualifier while invoking the
ARCHIVE, BACKUP, COPY/REQUEST, COPY/VSET, MODIFY/COMMAND,
RETRIEVE/DBSPACESET, or RETRIEVE/LOGFILE commands, onarchive calls
the onautovop utility to satisfy that request when the request is executed.

Example

The following example shows how to use the AUTOVOP qualifier in the
COPY/VSET command at the onarchive command-line prompt:

COPY/VSET=arcvset/DEST=tapevset/AUTOVOP

The example shows how to use the COPY command to copy the arcvset
source volume set to the tapevset destination volume set and then release
you to proceed to other tasks.
4-6 Guide to 7.1 Feature Enhancements

Using the NOAUTOVOP Qualifier
Using the NOAUTOVOP Qualifier
The NOAUTOVOP qualifier is the default setting for the ARCHIVE,
BACKUP, COPY/VSET, MODIFY/COMMAND, RETRIEVE/DBSPACESET, or
RETRIEVE/LOGFILE commands. If you do not specify the AUTOVOP qualifier
in those onarchive commands, the commands default to NOAUTOVOP. The
NOAUTOVOP qualifier ensures that those commands function as in earlier
versions.

Typically, you do not need to specify the NOAUTOVOP qualifier. However, if
you specify AUTOVOP in a personal default file, the NOAUTOVOP qualifier
allows you to override the AUTOVOP setting to ensure that the affected
onarchive commands function as in earlier versions.

Example

The following example shows how to use the NOAUTOVOP qualifier in the
COPY/VSET command at the onarchive command-line prompt:

COPY/VSET=arcvset/DEST=tapevset/NOAUTOVOP

The COPY command copies the arcvset source volume set to the tapevset des-
tination volume set. You cannot proceed to other tasks while that event
occurs.

Using Command Qualifiers with Each Other
When you specify the AUTOVOP qualifier together with the NOIMMEDIATE
qualifier, the onautovop utility performs the request when you issue the
EXECUTE command for that request. Similarly, when you specify the
AUTOVOP qualifier together with the IMMEDIATE qualifier, the onautovop
utility performs the request immediately.
ON-Archive Feature Enhancements 4-7

New ON-Archive Command
New ON-Archive Command
Use the LIST/RECOVERY command to list the volumes that are required to
restore a full installation and dbspaces.

You can now use the LIST/RECOVERY command to provide a guide to
restoring data. In earlier versions of ON-Archive, performing a cold restore of
data required you to keep careful records of archives and backups and forced
you to properly interpret those records during restore operations.

For information on the syntax and use of the LIST/RECOVERY command, see
“The LIST/RECOVERY Command” on page 4-26.

Important: Informix recommends that you use LIST/RECOVERY as part of the
archive procedure in the event of a system crash.

Using Enhanced ON-Archive Utilities
Several additional enhancements are now part of ON-Archive. Those
enhancements exist to provide you with greater administrative control, acci-
dent prevention during restores, and improved monitoring capability.

The following list provides a detailed description of ON-Archive utility
enhancements:

■ Compared to earlier versions of ON-Archive, the -r option of the
onautovop utility provides better control over command execution.
Now, onautovop can execute a specific request when you use the
-r option.

■ Before you run onarchive or onautovop, you must first start the
oncatlgr process. Now, when you invoke onarchive and onautovop,
those utilities start the oncatlgr process for you.

■ When you interrupt a logical restore by pressing CTRL-C, you must
start over. Now, the ondatartr utility warns you when you press
CTRL-C and allows you to cancel the interrupt.
4-8 Guide to 7.1 Feature Enhancements

Utility Enhancement for onautovop
Utility Enhancement for onautovop
When you use the onautovop utility, the new -r command-line qualifier
allows you to execute a specific request. The onautovop utility executes only
the specified request ID and then exits. The following diagram shows the
syntax of the onautovop utility.

The following example shows how to use the -r option with onautovop:

onautovop -r 5

In the example, the value 5 represents a request.

Utility Enhancements That Automatically Start oncatlgr
Running the onarchive or onautovop utilities automatically starts the
oncatlgr process.

Both onarchive or onautovop require a running oncatlgr process to operate.
When either of those utilities start, they check for a running oncatlgr process.
If that process is not running, either utility automatically starts an oncatlgr
process.

onautovop

-V

-r rid

-r executes the request specified by the rid qualifier.
rid represents the request ID number.
-V prints the version number and exits.
ON-Archive Feature Enhancements 4-9

Interrupt Enhancement to the ondatartr Utility
Interrupt Enhancement to the ondatartr Utility
Interrupting a restore forces you to restart the entire process from the begin-
ning. When you interrupt a logical restore by pressing CTRL-C, ondatartr
now verifies whether you want to proceed with that interrupt. The verifica-
tion prompt asks you if you want to interrupt ondatartr and provides you
with a last chance to prevent the termination of a logical restore.

When you press the CTRL-C key sequence during a logical restore, the
ondatartr utility displays the following prompt:

Interrupt of ondatartr during logical restore will require a
restart of the entire cold restore. Really interrupt the
restore? (y/n)

Type Y to terminate ondatartr. Type N to continue the logical restore without
interruption.

See the INFORMIX-OnLine Dynamic Server Archive and Backup Guide for infor-
mation on what to do if you press an incorrect key during a restore.

Automating Backups Using an Event Alarm Script
When a logical log changes state, an event alarm occurs. The new event-
alarm feature allows you to automatically execute backups. This feature per-
mits you to back up logical logs without using continuous backups. In addi-
tion, you are not required to monitor the state of logical logs to know when
to start an automatic backup. Informix provides a sample script to help you
understand this process.
4-10 Guide to 7.1 Feature Enhancements

Understanding the Sample Script
Understanding the Sample Script
The event-alarm mechanism has the facility to call only one program. That
program must handle all event alarms that the database administrator wants
to capture. To help you deal with event alarms, Informix has provided a sam-
ple script called logevent.sh. You can find that sample script in the
$INFORMIXDIR/etc directory where the other ON-Archive scripts are stored.
You can use that script as a basis or model for automating a logical-log
backup. You must edit logevent.sh before you can use it. The script has one
limitation in that it does not know which volume sets you are using for log
backups.

In the sample script, you can configure the following items:

■ The percentage of full logs that trigger a logical-log backup

■ The volume set used for the backup

When an event occurs, the database server can execute the script providing
that you specify the full pathname of that script in the ONCONFIG file. When
you place that script in the $INFORMIXDIR /etc directory, you gain an
enhanced ability to administer the script.

To use an event-alarm script, perform the following steps:

1. Create a new script or configure the sample script for the correct
environment.

2. Place the script in the $INFORMIXDIR/etc directory or any directory
that you choose.

3. Specify the pathname of the script in the ONCONFIG file by using the
ALARMPROGRAM configuration parameter. The pathname that you
specify for the ALARMPROGRAM parameter must contain the full
pathname of the sample script.
ON-Archive Feature Enhancements 4-11

Adding an ON-Archive Activity Log to Log Archive Events
Adding an ON-Archive Activity Log to Log Archive
Events
ON-Archive produces the ON-Archive activity log that contains a history of
all the ON-Archive actions. You can find an example of the ON-Archive activ-
ity log in Figure 4-1 on page 4-13.

Before you start using ON-Archive, produce the ON-Archive activity log
using the following steps:

1. The ON-Archive activity log can be large. Make sure the ON-Archive
activity log resides in a directory that is appropriate for that file.

2. Make sure appropriate file permissions exist so that you can use the
directory where the activity log resides.

3. Edit the config.arc configuration file. If you are not using the
config.arc file, edit the file specified by the ARC_CONFIG environ-
ment variable.

4. Insert an ACTIVITYLOG parameter into the specified file.

5. Make sure the ACTIVITYLOG parameter holds the full pathname of
the ON-Archive activity log file. The following example shows how
to set the ACTIVITYLOG parameter.
ACTIVITYLOG = /usr/informix/etc/onarchive.log

The ACTIVITYLOG configuration parameter points to the ON-Archive activity
log. The ON-Archive activity log records all significant events generated by
ON-Archive. The information in the ON-Archive activity log includes the
beginning and end of all ARCHIVE, BACKUP, COPY, and RESTORE events.

In addition, the ON-Archive activity log contains information on dbspacesets,
volume sets, volumes, and requests. The file records only commands that
change the state of ON-Archive. The file does not record usage or syntax
errors.
4-12 Guide to 7.1 Feature Enhancements

Using the ON-Archive Activity Log
Using the ON-Archive Activity Log
Because several ON-Archive processes can run in parallel (for example,
onarchive and onautovop can run simultaneously), the ON-Archive activity
log conforms to a format that allows you to trace the history of the
ON-Archive catalogs and follow different threads of execution.

Figure 4-1
Example of data within an ON-Archive activity log

Apr 19 1994 09:30 #00000000# <8734> onarchive (informix) defined dbs1and2:
define/dbspaceset=dbs1and2/dbspaces=(dbs1, dbs2)
Apr 19 1994 09:35 #00000000# <8734> onarchive (informix) defined vset1: define/vset=vset1/
access=5/device_type=tape/class=system/driver=tape
Apr 19 1994 09:37 #00000000# <9762> onarchive (informix) vset1:0001: define/volume/vset-vset1
Apr 19 1994 10:01 #00000000# <9762> onarchive (informix) created request #000000005#:
archive/dbspaceset=dbs1and2
Apr 19 1994 10:02 #00000005# <9762> onarchive (informix) begin to archive to vset1

10:04 #00000005# <9762> processing dbs1 to vset1:0001
Apr 19 1994 10:04 #00000000# <9762> onarchive (informix) defined vset1:0002: define/volume/vset=vset1

10:06 #00000005# <9762> processing dbs1 to vset1:000210:09 #00000005# <9762> processing dbs2
to vset1:0002

10:22 #00000005# <9762> failure detected: ARC-01026E Cannot close the file on tape
Apr 19 1994 10:25 #00000005# <9762> end archive: FAILED
Apr 19 1994 10:30 #00000000# <9764> onarchive (root) created request #000000006#: backup
continuous/immediate/autovop
Apr 19 1994 10:30 #00000006# <9765> onautovop (root) begin continuous backup

10:35 #00000006# <9765> processing logfile1 to vsetlogs:0001
10:40 #00000006# <9765> processing logfile2 to vsetlogs:0001
10:46 #00000006# <9765> processing logfile2 to vsetlogs:0002

Apr 19 1994 11:05 #00000000# <863> ondatartr (root) begin retrieve
11:06 #00000000# <863> processing logfile3 to ONDATARTRLOG:0001 /dev/rst0
11:09 #00000000# <863> retrieved dbs1 #00000005# from vset1:0001,000
11:15 #00000000# <863> retrieved dbs2 #00000005# from vset1:0002
11:15 #00000000# <863> retrieved logfile1#00000006# from vsetlogs:000
11:17 #00000000# <863> retrieved logfile2 #00000006# from vsetlogs:0001,0002
11:20 #00000000# <863> retrieved logfile3 #00000863# from ONDATARTRLOG:0001
ON-Archive Feature Enhancements 4-13

Using the ON-Archive Activity Log
Figure 4-1 on page 4-13 shows several significant features:

■ Date and time printed for the following events:

❑ Discrete events
Apr 19 1994 09:30 #00000000# <8734> onarchive (informix)
defined dbs1and2: define/dbspaceset=dbs1and2/dbspaces=(dbs1, dbs2)

❑ Begin marks for events that occur over a time interval
10:30 #00000006# <9765> onautovop (root) begin continuous backup

❑ End marks for events that occur over a time interval
10:25 #00000005# <9762> end archive: FAILED

■ The name of the program that generated the event

■ The user ID of the person who executed the program that generated
the event
09:37 #00000000# <9762> onarchive (informix) vset1:0001:
define/volume/vset-vset1

■ Request and process IDs printed after the timestamps, which show
all events appropriate to ON-Archive activity

Hash marks (#) enclose the request ID. Greater than and less than
signs (><) enclose the process ID. This information allows you to
search easily for the sequence of events for a particular process, a
particular request, or both.
10:04 #00000005# <9762> processing dbs1 to vset1:0001

■ The entire command issued to create, modify, or delete an
ON-Archive object

This information allows for easy re-creation of the ON-Archive
catalogs and helps you understand what happens during execution
events.
10:30 #00000000# <9764> onarchive (root) created request
#000000006#: backup continuous/immediate/autovop
4-14 Guide to 7.1 Feature Enhancements

Change to the PRIVILEGE Configuration Parameter
■ Events that take time to complete, such as ARCHIVE, BACKUP, COPY,
and RETRIEVE.

Those events are bracketed by lines that contain the request ID and
the words begin and end. The end events include the status of the
request and are preceded by error messages when failure occurs.
10:02 #00000005# <9762> onarchive (informix) begin to archive to vset1
10:04 #00000005# <9762> processing dbs1 to vset1:0001
Apr 19 1994 10:04 #00000000# <9762> onarchive (informix) defined vset1:0002:
define/volume/vset=vset1
10:06 #00000005# <9762> processing dbs1 to vset1:000210:09 #00000005#
<9762> processing dbs2 to vset1:0002
10:22 #00000005” <9762> failure detected: ARC-01026E Cannot close the file
on tape
Apr 19 1994 10:25 #00000005# <9762> end archive: FAILED

■ All significant changes in state during the execution of ARCHIVE,
BACKUP, COPY, and RETRIEVE events.

These events include changing tapes or dbspaces during an archive
or restore.

10:04 #00000005# <9762> processing dbs1 to vset1:0001

Change to the PRIVILEGE Configuration Parameter
You set ON-Archive configuration parameters in the config.arc file. In the cur-
rent version of ON-Archive, you cannot use the OWNER option of the
PRIVILEGE parameter. For more information on PRIVILEGE parameter
modes, see the INFORMIX-OnLine Dynamic Server Archive and Backup Guide.

ARCHIVE and BACKUP Qualifiers
This section describes qualifiers that were referenced in the ARCHIVE and
BACKUP syntax diagrams for some commands. See the INFORMIX-OnLine
Dynamic Server Archive and Backup Guide for those diagrams. The new quali-
fiers are AUTOVOP, NOAUTOVOP, IMMEDIATE, and NOIMMEDIATE.
ON-Archive Feature Enhancements 4-15

ARCHIVE and BACKUP Qualifiers
/BLOCKSIZE = blocksize

/COMMENT = "string"

/NOAPART

/LOG

/NOLOG

/NOTRANSIT

= vset
/NOVERIFY

/NOTIFY

Archive
and

Backup
Qualifiers

/VSET =

/EXPIRY_DATE =

/NOEXPIRY_DATE

dd-mon-year

days

- hours

: secs

vset

,
()

/CRC

/NOCRC

/COPIES=number

/TRANSIT

/IMMEDIATE

/NOIMMEDIATE
/AUTOVOP

/NOAUTOVOP

/APART

/VERIFY

/NONOTIFY

: mins

:hh:mm:ss

1

1

1

1

1

1

1

1

1

1

1

1

1

vset
4-16 Guide to 7.1 Feature Enhancements

ARCHIVE and BACKUP Qualifiers
APART specifies that the save set must reside on a separate vol-
ume from other save sets. That is, the save set is written
to a blank volume, and no other save sets are written to
the volume. Whenever you write to a remote tape
device, you must use the APART qualifier. See “Keeping
Archives on Separate Volumes” in Chapter 5 of the
INFORMIX-OnLine Dynamic Server Archive and Backup
Guide.

NOAPART indicates that the save set can be stored on volumes with
other save sets. It is the default.

AUTOVOP specifies when you want to proceed to other tasks with-
out waiting for a request to finish.

NOAUTOVOP specifies the default setting for ARCHIVE and BACKUP
qualifiers. Allows you to override an AUTOVOP default
setting, specified in a personal default file, to ensure that
the ARCHIVE and BACKUP qualifiers function as in ear-
lier versions.

BLOCKSIZE specifies the block size in bytes when writing to tape vol-
umes or, with NB_DISK_SPACE_EXTENT, the size of disk-
space allocations when writing to disk. See “Disk-Space
Allocation During Concurrent Operations” in Chapter 2
of the INFORMIX-OnLine Dynamic Server Archive and
Backup Guide.
The internal default value is 64 kilobytes as specified in
the operator default file. See “Where Qualifier Default
Values Are Specified” in Chapter 4 of the
INFORMIX-OnLine Dynamic Server Archive and Backup
Guide.
blocksize is an integer from 8197 to 65,024 specifying the

block size in bytes.
COMMENT specifies a text string containing a comment about the

archive or backup operation. The comment is stored
with the request in the ON-Archive catalog.
string is a text string containing a comment about

the archive. The string cannot exceed
80 characters.
ON-Archive Feature Enhancements 4-17

ARCHIVE and BACKUP Qualifiers
COPIES specifies the number of copies (including the original)
that must be made of the save set created by the request.
Each copy is created on a different vset for greater secu-
rity. See “Creating Multiple Copies of an Archive” in
Chapter 5 of the INFORMIX-OnLine Dynamic Server
Archive and Backup Guide.
number is an integer from 1 to 5. You must specify the

same number of vsets with the VSET qualifier.
CRC adds a cyclic-redundancy check (CRC) field at the end of

each data block during the backup. This check ensures
that the data on the tape is still valid at the time of the
restore.

NOCRC bypasses the operation of writing the CRC field at the
end of each data block during the backup. It is the
default.

EXPIRY_DATE specifies an expiration date for a request. The onautovop
utility removes all information regarding the request
from the ON-Archive catalog when the operating system
date equals (or is greater than) the expiration date. See
“Specifying When Archive Data Is Obsolete” in
Chapter 5 of the INFORMIX-OnLine Dynamic Server
Archive and Backup Guide.
You can also remove specific requests manually
(and thus render save sets obsolete) using the
REMOVE/REQUEST command shown in Chapter 8 of the
INFORMIX-OnLine Dynamic Server Archive and Backup
Guide.
dd is an integer between 1 and 31 representing a

specific day in a month.
mon is a three-letter abbreviation for a month.
year is an integer representing a year.
hh is an integer representing the hour.
mm is an integer representing the minute.
ss is an integer representing the seconds in a

minute.
4-18 Guide to 7.1 Feature Enhancements

ARCHIVE and BACKUP Qualifiers
days is an integer between 0 and 9999 specifying a
number of days. The value is added to the
request-creation date (not the execution date)
to determine the expiration date.

hours is an integer between 0 and 24 specifying a
number of hours.

mins is an integer between 0 and 60 specifying a
number of minutes.

secs is an integer between 0 and 59 specifying a
number of seconds.

NOEXPIRY_DATE specifies that no expiration date must be set. It is the
default.

IMMEDIATE simplifies the process of creating and executing a
request. The IMMEDIATE qualifier saves time by allow-
ing you to create and execute a request using a single
command. It displays the request ID associated with that
request entry.

NOIMMEDIATE specifies the default setting for ARCHIVE and BACKUP
qualifiers. Allows you to override an IMMEDIATE default
setting, specified in a personal default file, to ensure that
the ARCHIVE and BACKUP qualifiers function as in ear-
lier versions.

LOG specifies that a log file must be generated for this request.
The log file is created in the directory where the
onarchive or onautovop command was started. The log
file is named arcrid.log, where rid is the archive or
backup request id.

NOLOG specifies that a log file must not be generated for this
request. It is the default.

NOTIFY specifies that after the request executes, electronic mail is
sent to the user who created the request.

NONOTIFY specifies that no mail is sent after the request executes. It
is the default.
ON-Archive Feature Enhancements 4-19

ARCHIVE and BACKUP Qualifiers
TRANSIT specifies whether a transit vset must be used. See “What
Is a Transit Volume Set?” in Chapter 2 of the
INFORMIX-OnLine Dynamic Server Archive and Backup
Guide.
If TRANSIT is used without any parameters, ON-Archive
selects a transit vset. It searches first through the user’s
transit vsets for an available transit vset. When none is
available, ON-Archive then searches the system-transit
vsets.
vset is the name of a transit vset.

NOTRANSIT specifies that a transit vset must not be used. It is the
default.

VERIFY instructs ON-Archive to reread each save set after writing
it to tape. Rereading each save set ensures that the data
on the tape can later be restored.

NOVERIFY instructs ON-Archive not to reread each save set after
writing it to the tape. NOVERIFY is the default.

VSET specifies the vset(s) to use for this operation. No default
value exists. When a vset is not specified, one is selected
automatically. See “How On-Archive Selects Volume
Sets, Devices, and Volumes” in Chapter 4 of the
INFORMIX-OnLine Dynamic Server Archive and Backup
Guide. More than one vset is usually only specified when
the COPIES qualifier is used.
vset is the name of a vset.
4-20 Guide to 7.1 Feature Enhancements

ON-Archive Syntax Enhancements
ON-Archive Syntax Enhancements
This section contains syntax diagrams and descriptions for commands now
enhanced to support new qualifiers. The following list shows the enhanced
commands:

■ COPY/VSET and COPY/VSET/REQUEST

■ MODIFY/COMMAND

■ RETRIEVE/DBSPACESET

■ RETRIEVE/LOGFILE

This section also contains the syntax diagram and description for a new com-
mand called LIST/RECOVERY.

The COPY/VSET and COPY/VSET/REQUEST Commands
The COPY command creates a new request that, when executed, copies the
contents of one vset (or volume) onto another vset. Both the source and the
destination vsets must be previously defined.

The COPY command is a powerful storage-management tool. It can be used
for the following tasks:

■ Media refreshment

Copy an entire vset into another with similar definition, then delete
the old one.

■ Reclaiming storage space

Copy only unremoved and unexpired save sets from one vset into
another with a similar definition, then delete the old one.

■ Media conversion

Copy a vset defined on one type of media into another vset defined
on another type of media (for example, converting a volume from
disk to tape).
ON-Archive Feature Enhancements 4-21

The COPY/VSET and COPY/VSET/REQUEST Commands
■ Creating an extra copy of a specific save set

Copy a save set from one vset to another.

■ Data separation

Copy all save sets that belong to one user from one vset into another.

The following restrictions apply to the COPY command:

■ To copy a save set, you must have access to the volume on which the
save set is stored, and to both source and destination vsets.

■ The save sets selected from the input vset must not already exist in
the destination vset.

■ If ON-Archive is running in OPERATOR privilege mode, users root
and informix can copy save sets, even if they did not create the
request that created the save set.

■ If ON-Archive is running in GROUP privilege mode, users in the
super_archive, informix, or root groups can copy save sets, even if
they did not create the request that created the save set.

■ Only informix or root can copy an entire vset, regardless of the
privilege mode in which ON-Archive is running.

■ If the COPY request copies an entire vset and, therefore, generates
child requests to copy the individual save sets, the child requests do
not execute automatically; you must execute them. See “REQUEST”
in Chapter 8 of the INFORMIX-OnLine Dynamic Server Archive and
Backup Guide for more information. The new COPY/VSET qualifiers
are AUTOVOP, NOAUTOVOP, IMMEDIATE, and NOIMMEDIATE.
4-22 Guide to 7.1 Feature Enhancements

The COPY/VSET and COPY/VSET/REQUEST Commands
/COMMENT = " string "1

/APART1

/WAIT =1

/NOAPART

T:dd-mon-year

:hh:mm:ss

R:rid

()

,

R:rid

:hh:mm:ss

T:dd-mon-year ,

/BLOCKSIZE = number

/NOTRANSIT

Copy
 Vset

Qualifiers

/CRC1

1 /TRANSIT

/NOTIFY1

/NONOTIFY

COPY /VSET = vsetname
Copy
 Vset

Qualifiers
/DESTINATION = dvset

= vsetname

/NOAUTOVOP

/REQUEST =1 rid

/IMMEDIATE

/NOIMMEDIATE

/AUTOVOP

1

1

ON-Archive Feature Enhancements 4-23

The COPY/VSET and COPY/VSET/REQUEST Commands
APART specifies that the save set must be kept on a volume sep-
arate from other save sets (that is, the save set is written
to a blank volume and no other save sets are written to
that volume). Whenever you write to a remote tape
device, you must use the APART qualifier.

NOAPART indicates that the save set can be stored on volumes with
other save sets. It is the default.

AUTOVOP specifies when you want to proceed to other tasks with-
out waiting for a request to finish.

NOAUTOVOP specifies the default setting for the COPY/VSET and
COPY/VSET/REQUEST commands. Allows you to over-
ride an AUTOVOP default setting, specified in a personal
default file, to ensure that the COPY/VSET and
COPY/VSET/REQUEST commands function as in earlier
versions.

BLOCKSIZE specifies the block size in bytes when writing to tape vol-
umes or, with NB_DISK_SPACE_EXTENT, the size of disk
space allocations when writing to disk. See “Disk-Space
Allocation During Concurrent Operations” in Chapter 2
of the INFORMIX-OnLine Dynamic Server Archive and
Backup Guide.
The internal default value is 64 kilobytes as specified in
the operator default file. See “Where Qualifier Default
Values Are Specified” in Chapter 4 of the
INFORMIX-OnLine Dynamic Server Archive and Backup
Guide.
number is an integer specifying the block size in bytes.

The valid block-size range is from 8197 to
65,024.

COMMENT specifies a text string containing a comment about the
copy operation. The comment is stored with the save set
in the ON-Archive catalog.
string is a text string. It cannot exceed 80 characters.

CRC instructs ON-Archive to add a cyclic-redundancy check
(CRC) at the end of each save-set block.

DESTINATION specifies the name of a vset to copy to.
dvset is the name of an existing vset.
4-24 Guide to 7.1 Feature Enhancements

The COPY/VSET and COPY/VSET/REQUEST Commands
IMMEDIATE simplifies the process of creating and executing a
request. The IMMEDIATE qualifier saves time by allow-
ing you to create and execute a request using a single
command. Displays the request ID associated with that
request entry.

NOIMMEDIATE specifies the default setting for the COPY/VSET and
COPY/VSET/REQUEST commands. Allows you to over-
ride an IMMEDIATE default setting, specified in a per-
sonal default file, to ensure that the COPY/VSET and
COPY/VSET/REQUEST commands function as in earlier
versions.

NOTIFY specifies that after the request executes, electronic mail is
sent to the user who created the request.

NONOTIFY specifies that no mail is sent after the request executes. It
is the default.

REQUEST specifies that only save sets created by the specified
request are to be copied.
rid is an existing request id.
If you do not use the REQUEST qualifier to specify partic-
ular save sets, the entire vset is copied to the destination
vset. ON-Archive does this by generating a new child
request for each save set in the vset to copy it to the
destination vset. Those requests must then be executed.

TRANSIT controls whether a transit vset must be used. See
“What Is a Transit Volume Set?” in Chapter 2 of the
INFORMIX-OnLine Dynamic Server Archive and Backup
Guide.
If TRANSIT is used without any parameters, ON-Archive
selects a transit vset. It searches first through the user’s
transit vsets for an available transit vset. When no transit
vsets are available, ON-Archive then searches the
system-transit vsets. See the CLASS qualifier for the
DEFINE/VSET command in Chapter 4 of the
INFORMIX-OnLine Dynamic Server Archive and Backup
Guide for more information on system and user vsets.
A transit vset is necessary for COPY when the source and
destination vset require the same device type, and only
one device of that type is available.
vsetname is the name of a transit vset.
ON-Archive Feature Enhancements 4-25

The LIST/RECOVERY Command
COPY/VSET Example

The following example creates a request to copy vset may93 to vset
may93bkp:

Onarchive> COPY/VSET=may93/DESTINATION=may93bkp

The LIST/RECOVERY Command
The LIST/RECOVERY command improves the data-restoration process and
generates a report that displays data-restoration information. The
LIST/RECOVERY command provides a simple mechanism for printing or sav-
ing. In addition, the LIST/RECOVERY command generates a report that does
the following tasks:

■ Sorts volumes in the mount order required for restore

■ Provides an indication of the volumes that contain critical data

■ Serves as a guide during cold restores to make OnLine available as
quickly and easily as possible.

The LIST/RECOVERY command sorts the data in the order required to restore
the data.When you specify a dbspace, or a list of dbspaces, LIST/RECOVERY
displays only the data required to perform a warm restore of the dbspaces.

NOTRANSIT specifies that a transit vset must not be used. It is the
default.

VSET specifies the name of a vset to copy from.
vsetname is the name of an existing vset.

WAIT controls whether a request must wait for certain events
to occur before it can start. See “Wait and Repeat Quali-
fiers” in Chapter 8 of the INFORMIX-OnLine Dynamic
Server Archive and Backup Guide.

Request 00000041 registered in the catalog.
4-26 Guide to 7.1 Feature Enhancements

The LIST/RECOVERY Command
When you run ON-Archive in OPERATOR mode, you can list the recovery
report only if you log in as informix or root. When you run ON-Archive in
GROUP mode, only users in the super_archive, informix, or root groups can
generate a LIST/RECOVERY report.

Execute the LIST/RECOVERY command after the following events:

■ Archiving the entire installation

■ Archiving critical and noncritical dbspaces separately

■ Archiving some critical and noncritical dbspaces together, but
without archiving the entire installation

■ Archiving level 0, changing data, then archiving again at levels 1
and 2

■ Archiving, changing data, and backing up the logical logs

■ Archiving successfully, trying another archive that fails, then
archiving successfully

■ Making incremental archives on specific dbspacesets

LIST /RECOVERY /DBSPACE= *

dbspacename

* is a wildcard character that represents all dbspace
names.

DBSPACE instructs the LIST command to display dbspace
information.

dbspacename is the name of a specific dbspace.
RECOVERY instructs the LIST command to display data-restoration

information.
ON-Archive Feature Enhancements 4-27

The LIST/RECOVERY Command
When those events finish, verify the contents of the ON-Archive activity log.
In addition, make sure that you check the contents of the ON-Archive activity
log after you complete the following tasks:

■ Explicitly define dbspacesets, volume sets, and volumes

■ Create requests to archive and back up without executing those
requests

■ Restore a dbspace

■ Enact a cold restore

For more information on the ON-Archive activity log, see “Adding an
ON-Archive Activity Log to Log Archive Events” on page 4-12.

LIST/RECOVERY Example

The following example shows one way to display recovery information using
the LIST/RECOVERY command:

LIST/RECOVERY/DBSPACE=*

The output displays recovery information for all dbspaces in an installation
that performs whole archives daily at approximately 1 a.m., level 0 archives
monthly, level 1 archives Sunday mornings, level 2 archives daily, and con-
tinuous log backups (three logs per saveset) between archives.

onarchive> LIST/RECOVERY
Recovery requirements as of April 18, 1994 at 09:20 for * + = required for minimal restore
Vol Save Set VSet Label Device Date Level
0100 00000100 March_Monthly Mar0M 8mmTape01-APR-1994 01:130 dbs1, dbs2, dbs3, rootdbs+
0101 00000100 March_Monthly Mar1M 8mmTape01-APR-1994 01:130 dbs1, dbs2, dbs3, rootdbs+
0102 00000100 March_Monthly Mar2M 8mmTape01-APR-1994 01:130 dbs1, dbs2, dbs3, rootdbs+
0134 00000130 April_Week_2 Apr0W28mmTape17-APR-1994 01:091 dbs1, dbs2, dbs3, rootdbs+
0135 00000132 April_Week_2 Apr1W28mmTape17-APR-1994 01:252 dbs1, dbs2, dbs3, rootdbs+
0137 00000132 April-Day_18_Logs Apr18L8mmTape18-APR-1994 05:47Backup LF00001234, LF00001235, LF00001236
0140 00000134 April-Day_18_Logs Apr18L8mmTape18-APR-1994 09:15Backup LF00001237, LF00001238, LF00001239
4-28 Guide to 7.1 Feature Enhancements

The MODIFY/COMMAND Command
The MODIFY/COMMAND Command
The MODIFY/COMMAND command enables you to modify previously
entered ARCHIVE, BACKUP, COPY, REMOVE (with WAIT), and RETRIEVE
requests that have a status of NEW, FAILED, CANCELLED, or UNCOMPLETED.
The MODIFY/COMMAND command enables you to add, replace, or delete
the qualifiers in the qualifier lists of these commands.

Modifying a request whose status is NEW simply updates its qualifier list
with the specified changes. Modifying requests with any of the other permit-
ted status values generates a new request with the updated qualifier list.

You can use the DELETE qualifier when you modify requests of FAILED,
CANCELLED, or UNCOMPLETED status.

When you use the onarchive menu interface, you can delete qualifiers from
a command by simply blanking out the field on the menu.

The following restrictions apply to the MODIFY/COMMAND command:

■ If ON-Archive is running in OPERATOR privilege mode, a user must
be informix or root to modify a request. Users informix and root can
modify any other user’s requests.

■ If ON-Archive is running in GROUP privilege mode, users can only
modify their own requests. Users who are members of the
super_archive group can modify any other user’s requests.

The new MODIFY/COMMAND qualifiers are AUTOVOP, NOAUTOVOP,
IMMEDIATE, and NOIMMEDIATE.
ON-Archive Feature Enhancements 4-29

The MODIFY/COMMAND Command
MODIFY /COMMAND = rid

/COMMENT = NOCOMMENT

/OUTPUT = NOOUTPUT

/VSET = NOVSET

command_specific_qualifiers

Modify
Command
Qualifiers

1

1

1

/DELETE

/IMMEDIATE

/NOIMMEDIATE

/AUTOVOP

/NOAUTOVOP

Modify
Command
Qualifiers

1

1

AUTOVOP specifies when you want to proceed to other tasks with-
out waiting for a request to finish.

NOAUTOVOP specifies the default setting for the MODIFY/COMMAND
command. Allows you to override an AUTOVOP default
setting, specified in a personal default file, to ensure that
the MODIFY/COMMAND command functions as in ear-
lier versions.

COMMAND specifies the original request to modify.
rid is a request in the catalog.

command-specific-
qualifiers

The qualifiers permitted with this command depend on
the type of request being modified. For example, if an
ARCHIVE request is being modified, only the qualifiers
permitted with that command are valid.

COMMENT=
NOCOMMENT

removes the comment from the specified request.
4-30 Guide to 7.1 Feature Enhancements

The MODIFY/COMMAND Command
See “The REMOVE/FAILED_REQUEST Command,” “The
REMOVE/REQUEST Command,” and “Groups of Qualifiers” in Chapter 8
of the INFORMIX-OnLine Dynamic Server Archive and Backup Guide for more
information on removing requests from the ON-Archive catalog.

DELETE can only be used with requests with the status FAILED,
CANCELLED, or UNCOMPLETED. This qualifier deletes
the original request.

IMMEDIATE simplifies the process of creating and executing a
request. The IMMEDIATE qualifier saves time by allow-
ing you to create and execute a request using a single
command. Displays the request ID associated with that
request entry.

NOIMMEDIATE specifies the default setting for the MODIFY/COMMAND
command. Allows you to override an IMMEDIATE
default setting, specified in a personal default file, to
ensure that the MODIFY/COMMAND command func-
tions as in earlier versions.

OUTPUT=
NOOUTPUT

removes the OUTPUT qualifier from the specified
request.

VSET=NOVSET removes the VSET qualifier from the specified request.
ON-Archive Feature Enhancements 4-31

RETRIEVE/DBSPACESET Command
MODIFY/COMMAND Examples

The following example removes the comment from request 11:

Onarchive> MODIFY/COMMAND=11/COMMENT=NOCOMMENT

The following command creates a new request, using request 21 as a base,
modifying the DBSPACESET qualifier in request 21. It also removes request 21
from the catalog.

Onarchive> MODIFY/COMMAND=21/DBSPACESET=*/DELETE

The following command removes the cancelled request 13 from the catalog:

Onarchive> MODIFY/COMMAND=13/DELETE

The following command negates the APART, LOG, and EXPIRY_DATE
qualifiers for request 30:

Onarchive> MODIFY/COMMAND=30/NOAPART/NOLOG/NOEXPIRY_DATE

RETRIEVE/DBSPACESET Command
The RETRIEVE/DBSPACESET command performs a physical restore of the
dbspace set or dbspaces specified. The root dbspace must be among the first
dbspaces restored. You can only use this command when OnLine is off-line.
The new RETRIEVE/DBSPACESET qualifiers are AUTOVOP, NOAUTOVOP,
IMMEDIATE, and NOIMMEDIATE. For information on how to use the
RETRIEVE/DBSPACESET command with the ondatartr utility, see Chapter 7 of
the INFORMIX-OnLine Dynamic Server Archive and Backup Guide.

Request 00000011 modified

Request 00000034 registered in the catalog
Request 00000021 removed from the catalog
4-32 Guide to 7.1 Feature Enhancements

RETRIEVE/DBSPACESET Command
/

Disk
Options

()

1

dbspaceset

RETRIEVE /DBSPACESET=

/DBSPACE =

*

*

dbspace

,
dbspace

Tape
Options

Disk
Options

Tape
Options

/DISK = path()

/SALVAGELOGS = path() /MAX_SPACE = size

/TAPE =

/SALVAGELOGS = path()

path()

/NOIMMEDIATE

/AUTOVOP

/NOAUTOVOP

/IMMEDIATE
ON-Archive Feature Enhancements 4-33

RETRIEVE/DBSPACESET Command
AUTOVOP specifies when you want to proceed to other tasks with-
out waiting for a request to finish.

NOAUTOVOP specifies the default setting for the
RETRIEVE/DBSPACESET command. Allows you to
override an AUTOVOP default setting, specified in a
personal default file, to ensure that the
RETRIEVE/DBSPACESET command functions as in
earlier versions.

DBSPACE specifies particular dbspaces to be restored within a
dbspace set. When you omit this qualifier, all the
dbspaces within the dbspace set are restored.
dbspace is any dbspace that was archived with this

dbspace set.
* specifies all dbspaces for the dbspace set.

DBSPACESET specifies the dbspace set or sets to be restored. The root
dbspace must be among the first dbspaces restored.
If * is specified, it refers to a restore of all the dbspaces
managed by OnLine. To use * for a restore, you must
have created the archive that you want to restore using
the * parameter with the ARCHIVE/DBSPACESET com-
mand.
dbspacesetis any dbspace set that was archived in this

save set.
DISK specifies the pathname of the disk volume from which

the dbspaceset is being restored.
path is the pathname to a file.

IMMEDIATE simplifies the process of creating and executing a
request. The IMMEDIATE qualifier saves time by allow-
ing you to create and execute a request using a single
command. Displays the request ID associated with that
request entry.

NOIMMEDIATE specifies the default setting for the
RETRIEVE/DBSPACESET command. Allows you to
override an IMMEDIATE default setting, specified
in a personal default file, to ensure that the
RETRIEVE/DBSPACESET command functions as in ear-
lier versions.
4-34 Guide to 7.1 Feature Enhancements

RETRIEVE/DBSPACESET Command
As described in “Start Parallel Cold Physical Restores” in Chapter 7 of the
INFORMIX-OnLine Dynamic Server Archive and Backup Guide, once OnLine is
in recovery mode, you can use a different ondatartr process to start a physical
restore of another save set (or sets).

As described in “Perform a Logical Restore with ondatartr” in Chapter 7 of
the INFORMIX-OnLine Dynamic Server Archive and Backup Guide, once the
physical restore is completed, you can use ondatartr to start a logical restore,
or you can bring OnLine to on-line mode without restoring the logical-log
files. If you do not restore logical-log files, your OnLine data is restored only
to its state at the time of the archive.

MAX_SPACE specifies the size of the disk volume in 512-byte blocks
where the salvaged logs are written. MAX_SPACE is
required when the DISK qualifier is present.
size is an integer between 0 and 99999999. The

minimum usable size of MAX_SPACE is 16,
which is ((page size * 3)/ 512) + 4.

SALVAGELOGS instructs ondatartr to back up any logical-log files that
are currently not backed up. It backs them up to the
specified volume before a level-0 physical restore
occurs. The device type (DISK or TAPE) is assumed to be
the same as is specified for the retrieve operation,
although the pathname to the volume device can be
different.
The volume created is in the vset ONDATARTRLOG and
is given a volume number 1. You can later use the CAT-
ALOG command to catalog the volume.
path is the pathname to either a file or a tape

device. Pathnames used here can differ from
the pathnames specified in the DISK and
TAPE qualifiers but must be of the same type.

TAPE specifies the pathname of the device that has mounted
on it the tape volume from which the dbspaceset is
being restored.
path is the pathname to a tape device.
ON-Archive Feature Enhancements 4-35

The RETRIEVE/LOGFILE Command
The RETRIEVE/LOGFILE Command
The RETRIEVE/LOGFILE command determines which logical-log files were
backed up after the last archive, tells you the numbers, and prompts you to
enter the request IDs of commands to retrieve them.

OnLine must be running (in recovery mode) to execute this command. The
oncatalgr utility, however, cannot be running. After the log files are retrieved,
OnLine is in quiescent mode. The new RETRIEVE/LOGFILE qualifiers are
AUTOVOP, NOAUTOVOP, IMMEDIATE, and NOIMMEDIATE. For information
on how to use the RETRIEVE/LOGFILE command with the ondatartr utility,
see Chapter 7 of the INFORMIX-OnLine Dynamic Server Archive and Backup
Guide.

/TAPE =

path/DISK = ()RETRIEVE /LOGFILE

/NOIMMEDIATE

/AUTOVOP

/NOAUTOVOP

/IMMEDIATE

AUTOVOP specifies when you want to proceed to other tasks with-
out waiting for a request to finish.

NOAUTOVOP specifies the default setting for the RETRIEVE/LOGFILE
command. Allows you to override an AUTOVOP
default setting, specified in a personal default file, to
ensure that the RETRIEVE/LOGFILE command func-
tions as in earlier versions.

DISK specifies the pathname of the disk volume from which
the log files are being restored.
path is the pathname to a directory.

IMMEDIATE simplifies the process of creating and executing a
request. The IMMEDIATE qualifier saves time by allow-
ing you to create and execute a request using a single
command. Displays the request ID associated with that
request entry.
4-36 Guide to 7.1 Feature Enhancements

The RETRIEVE/LOGFILE Command
NOIMMEDIATE specifies the default setting for the RETRIEVE/LOGFILE
command. Allows you to override an IMMEDIATE
default setting, specified in a personal default file, to
ensure that the RETRIEVE/LOGFILE command func-
tions as in earlier versions.

LOGFILE specifies that you start a logical-restore operation.
TAPE specifies the pathname of the device that has mounted

on it the tape volume from which the log files are being
restored.
path is the pathname to a tape device.
ON-Archive Feature Enhancements 4-37

5
Chapter
SQL API Enhancements
Flagging Informix Extensions 5-3

Identifying New SQL Statements 5-4

New Warning Values 5-5

New ESQL/C Function 5-6
sqgetdbs() . 5-7

5-2 Guid
e to 7.1 Feature Enhancements

This chapter describes the new features available within this release of
the Informix SQL application-programming interface (API) products.

Flagging Informix Extensions
If you are writing an application that conforms to the ANSI SQL-92 standard,
you can check an ESQL program for syntax containing Informix extensions to
this standard by performing one of the following actions:

■ Set the DBANSIWARN environment variable to check for Informix
extensions in the static SQL statements (at compile time) and the
dynamic SQL statements (at run time).

■ Specify the -ansi command-line option of your ESQL preprocessor to
check for Informix extensions only in the static SQL statements (at
compile time).

With this release, the ESQL preprocessors (esql and esqlcobol) flag only the
features that do not conform to the ANSI SQL-92 entry level. Therefore, these
preprocessors no longer flag the following 7.1 features as Informix
extensions:

■ Use of delimited identifiers

For more information on delimited identifiers in ESQL/C, see
Chapter 1, “Programming in ESQL/C” in the INFORMIX-ESQL/C
Programmer’s Manual. Also see the Identifier segment in the Informix
Guide to SQL: Syntax.

■ Use of the AS keyword in the SELECT statement for labelling column
expressions

For more information on this keyword, see the entry for SELECT in
the Informix Guide to SQL: Syntax.
SQL API Enhancements 5-3

Identifying New SQL Statements
For more information on the ANSI flagging of SQL syntax, see the descrip-
tions of the SELECT statement and the Identifier segment in Chapter 3, “SQL
Enhancements,” of this supplement.

Identifying New SQL Statements
When you execute an SQL statement dynamically, you can use the DESCRIBE
statement to identify the type of SQL statement being executed. DESCRIBE
sets the global SQLCODE variable to an integer value that identifies the SQL
statement. The sqlstype.h header file provides a set of defined constants that
you can use in your code instead of the actual constant values.

Figure 5-1 shows the defined constants added to the sqlstype.h file for the
SQL statements that are new with this release.

Figure 5-1
New SQL statement constants

Within your ESQL application, use the constants named in Figure 5-1 instead
of the numeric values to identify these SQL statements when these statements
are executed dynamically.

SQL Statement ESQL Defined Constant
Constant
Value

SET SQ_SETOBJMODE 76

START VIOLATIONS TABLE SQ_START 77

STOP VIOLATIONS TABLE SQ_STOP 78

GRANT FRAGMENT SQ_GRANT

(same as the GRANT statement)

18

REVOKE FRAGMENT SQ_REVOKE

(same as the REVOKE statement)

19
5-4 Guide to 7.1 Feature Enhancements

New Warning Values
For more information on the use of the DESCRIBE statement
within an ESQL/C application, see Chapter 10, “Dynamic SQL in
INFORMIX-ESQL/C,” of the INFORMIX-ESQL/C Programmer’s Manual. For
information about the use of DESCRIBE within an ESQL/COBOL application,
see Chapter 6, “Dynamic Management in INFORMIX-ESQL/COBOL,” of
the INFORMIX-ESQL/COBOL Programmer’s Manual. In addition, see the entry
for DESCRIBE in the Informix Guide to SQL: Syntax.

New Warning Values
With this release, the GRANT and REVOKE statements now return a warning
in the following cases:

■ You attempt to grant ALL privileges to a user when you do not have
all seven table-level privileges yourself.

The GRANT statement successfully grants the privileges that you
have but sets a warning condition to indicate that some privileges
have not been granted.

■ You attempt to revoke ALL privileges from a user who has not been
granted all seven table-level privileges.

The REVOKE statement successfully revokes the privileges that the
revokee has but sets a warning condition to indicate that some privi-
leges have not been revoked.

In an ESQL application, you can check for this warning condition using either
the SQLSTATE variable or the SQLCA structure, as shown in the following
table:
SQL API Enhancements 5-5

New ESQL/C Function
For more information, see the description of the GRANT and REVOKE state-
ments in Chapter 3, “SQL Enhancements,” of this supplement. Chapter 3
also contains information on the new SQLWARN settings.

New ESQL/C Function
This version of the ESQL/C library contains a new function called sqgetdbs().
This section contains the following information about this function:

■ A function description that describes the syntax, arguments, and
return values as well as a general description of this function

■ A sample program (in the file sqgetdbs.ec) that uses sqgetdbs() to
display a list of available databases

Condition SQLSTATE

SQLCA Structure

ESQL/C ESQL/COBOL

GRANT ALL does not
grant all seven
table-level privileges

'01007' In sqlca.sqlwarn:

sqlwarn3 is set
to "W"

In SQLWARN OF SQLCA:

SQLWARN3 is set
to "W"

REVOKE ALL does not
revoke all seven
table-level privileges

'01006' In sqlca.sqlwarn:

sqlwarn1 is set
to "W"

In SQLWARN OF SQLCA:

SQLWARN1 is set
to "W"
5-6 Guide to 7.1 Feature Enhancements

sqgetdbs()
sqgetdbs()

Purpose
The sqgetdbs() function returns the names of databases that a database
server can access.

Syntax
int sqgetdbs(ret_fcnt, dbnarray, dbnsize, dbnbuffer, dbnbufsz)

int *ret_fcnt;
char **dbnarray;
int dbnsize;
char *dbnbuffer;
int dbnbufsz;

You must provide the following user-defined data structures to the
sqgetdbs() function:

■ The dbnbuffer buffer holds the names of the null-terminated database
names that sqgetdbs() returns.

■ The dbnarray array holds pointers to the database names stored in the
dbnbuffer buffer. For example, dbnarray[0] points to the first character
of the first database name returned (in dbnbuffer), dbnarray[1] points
to the first character of the second database name, and so on.

ret_fcnt is a pointer to the number of database names returned.
dbnarray is a user-defined array of character pointers.
dbnsize is the size of the dbnarray user-defined array.
dbnbuffer is a pointer to a user-defined buffer that contains the names of

the databases returned by the function.
dbnbufsz is the size of the dbnbuffer user-defined buffer.
SQL API Enhancements 5-7

sqgetdbs()
If the application is connected to a database server, a call to sqgetdbs()
returns the names of the databases that are available in the database server of
the current connection. Otherwise, it returns the database names available in
the default database server (indicated by the INFORMIXSERVER
environment variable). If you use the DBPATH environment variable to
identify additional database servers that contain databases, sqgetdbs() also
lists the databases that are available on these database servers. It first lists the
databases that are available through DBPATH and then the databases that are
available through the INFORMIXSERVER environment variable.

Return Codes

Example
This sample program is contained in the sqgetdbs.ec file in the demo
directory.

/*
 * sqgetdbs.ec *

 This program lists the available databases in the database server
 of the current connection.
*/

#include <stdio.h>

/* Defines used with exception-handling function: exp_chk() */
#define WARNNOTIFY 1
#define NOWARNNOTIFY 0

/* Defines used for user-defined data structures for sqgetdbs() */
#define BUFFSZ 256
#define NUM_DBNAMES 10

main()
{
 char db_buffer[BUFFSZ]; /* buffer for database names */
 char *dbnames[NUM_DBNAMES]; /* array of pointers to database
 names in ‘db_buffer’ */
 int num_returned; /* number of database names returned */
 int ret, i;

 printf("SQGETDBS Sample ESQL Program running.\n\n");

 EXEC SQL connect to default;
 exp_chk("CONNECT TO default server", NOWARNNOTIFY);
 printf("Connected to default server.\n");

0 Successfully obtained database names
<0 Unable to obtain database names
5-8 Guide to 7.1 Feature Enhancements

sqgetdbs()
 ret = sqgetdbs(&num_returned, dbnames, NUM_DBNAMES,
 db_buffer, BUFFSZ);
 if(ret < 0)
 {
 printf("Unable to obtain names of databases.\n");
 exit(1);
 }

 printf("\nNumber of database names returned = %d\n", num_returned);

 printf("Databases currently available:\n");
 for (i = 0; i < num_returned; i++)
 printf("\t%s\n", dbnames[i]);

 printf("\nSQGETDBS Sample Program over.\n\n");
}

/*
 * The exp_chk() file contains the exception handling functions to
 * check the SQLSTATE status variable to see if an error has occurred
 * following an SQL statement. If a warning or an error has
 * occurred, exp_chk() executes the GET DIAGNOSTICS statement and
 * displays the detail for each exception that is returned.
 */
EXEC SQL include exp_chk.ec;

For a listing of the exp_chk() exception-handling function, see Chapter 8,
“Exception Handling,” of the INFORMIX-ESQL/C Programmer’s Manual.

Example Output
The output you see from the sqgetdbs sample program depends on the
settings of your INFORMIXSERVER and DBPATH environment variables. The
following sample output assumes that the INFORMIXSERVER environment
variable is set to mainserver and that this database server contains three
databases called stores7, sysmaster, and tpc. This output also assumes that
the DBPATH environment is not set.

SQGETDBS Sample ESQL Program running.

Connected to default server.

Number of database names returned = 3
Databases currently available:

stores7@mainserver
sysmaster@mainserver
tpc@mainserver

SQGETDBS Sample Program over.
SQL API Enhancements 5-9

6
Chapter
DB-Access Enhancements
USER Clause of CONNECT Statement 6-3

The CONNECTION Menu 6-4

The SQL Menu . 6-5

Interactive Non-Menu and Background Modes 6-6
Connecting in Interactive Non-Menu Mode 6-6
Connecting with a File or Shell File in Background Mode 6-7

6-2 Guid
e to 7.1 Feature Enhancements

This chapter describes the new features of the DB-Access utility that is
packaged with INFORMIX-OnLine Dynamic Server and the INFORMIX-SE
database server. For additional information, see the DB-Access User Manual.

USER Clause of CONNECT Statement
DB-Access supports the USER clause of the CONNECT statement through the
CONNECTION and SQL menus and in interactive non-menu mode. This
feature allows you to specify a user ID or a user ID and password before you
connect to a database environment.
DB-Access Enhancements 6-3

The CONNECTION Menu
The CONNECTION Menu
On the DB-Access main menu, press the C key or highlight the Connection
option and press RETURN to call up the CONNECTION menu. To connect to a
database server, press the C key on the CONNECTION menu or press
RETURN.

DB-Access displays a list of available database servers and prompts you to
make a selection. Select a database server and DB-Access prompts you to
enter a user name, as shown in Figure 6-1.

■ If you do not specify a user identifier on the USER NAME screen and
simply press RETURN, you see the standard SELECT DATABASE
screen listing databases on the chosen database server.

■ If you enter the login name that you want DB-Access to use when
connecting to the target database server, DB-Access displays the
PASSWORD screen, as shown in Figure 6-2.

USER NAME >>
Enter the login name you want to use for this connection.

-- Press CTRL-W for Help -----

cowry

seahorse

starfish

Figure 6-1
The USER NAME

prompt screen

coral

PASSWORD >>
Enter the password associated with the user identifier.

-- Press CTRL-W for Help -----

cowry

seahorse

starfish

Figure 6-2
The PASSWORD

prompt screen

coral
6-4 Guide to 7.1 Feature Enhancements

The SQL Menu
Enter on the PASSWORD screen a password associated with the user
identifier, or press RETURN if you do not want to enter a password. For
security reasons, the password that you enter on the screen is not displayed.

If the user identifier and password combination is valid, you connect to the
target database server. You can then select a database on that database server.

For more information about using the CONNECTION menu to connect to a
database environment, see Chapter 6, “The Connection and Session Menu
Options,” in the DB-Access User Manual.

The SQL Menu
You can enter the SQL statement CONNECT with the USER clause through the
SQL menu in DB-Access. Select the Query-language menu from the DB-Access
main menu and then select the SQL menu to enter SQL statements. Other
options on the Query-language menu let you execute, modify, or redirect the
output for your CONNECT statement or select an existing command file
containing a CONNECT statement.

Tip: Do not include the USING clause in your CONNECT statement. If you do, you
will see error message -32412.

For information on the Query-language features of DB-Access, see Chapter 3,
“The Query-language Menu Option,” in the DB-Access User Manual. For the
syntax of the CONNECT ... USER statement, see the Informix Guide to SQL:
Syntax. For additional information on SQL statements, see Chapter 3, “SQL
Enhancements,” in this supplement.
DB-Access Enhancements 6-5

Interactive Non-Menu and Background Modes
Interactive Non-Menu and Background Modes
You can use the CONNECT ... USER syntax in SQL statements that are issued
in interactive mode; however, DB-Access does not support the USING
password syntax of the CONNECT statement in certain situations.

For complete information on CONNECT statement syntax, see the Informix
Guide to SQL: Syntax. For information on using DB-Access in interactive non-
menu mode, see Chapter 1, “Working with DB-Access,” in the DB-Access
User Manual.

Connecting in Interactive Non-Menu Mode
When you include the USER clause in a CONNECT statement in interactive
mode, DB-Access prompts you to enter a password. You can either enter a
user identifier or press the RETURN key. If you type in a password, you
cannot see it on the screen.

The following command examples show how to connect to a database server
in interactive mode.

The first example uses the CONNECT statement without a USING clause:

dbaccess - -

> connect to '@calserve';

Disconnected.

Connected.

If you include the USER clause in a CONNECT statement, as shown in the
second example, DB-Access prompts you for a password, using echo
suppression:

> connect to '@calserve' user 'dianne';

ENTER PASSWORD:

Connected.
6-6 Guide to 7.1 Feature Enhancements

Connecting with a File or Shell File in Background Mode
For security reasons, do not type the password on the screen where it can be
seen. To avoid displaying the password, also do not include the USING clause
in a CONNECT statement in interactive mode, as shown in the third example
command:

> connect to '@calserve' user 'dianne' using senat0r;

DB-Access cannot prompt you in background mode and returns the
following error:

32412 USING clause unsupported. DB-Access will prompt you for
a password.

Connecting with a File or Shell File in Background Mode
You can execute the USER clause of a CONNECT statement in a DB-Access file
or shell script and can include the USING clause.

The following example uses a command file that contains a CONNECT
statement with a USER clause to connect to a database server:

dbaccess - connfile.sql

Important: You can explicitly include the USING password clause of a CONNECT
statement in a DB-Access command file, but, for security reasons, you should make
the command file read-only by the user.

The following example uses a shell file to connect to a database server.
DB-Access prompts you for a password.

dbaccess - - <<\!
connect to '@calserve' user 'dianne';
!

ENTER PASSWORD:
DB-Access Enhancements 6-7

Error
Messages
Error Messages
OnLine Error Messages
None of the new OnLine features generate numbered error
messages. Instead, OnLine sends new and updated error
message to the message log. See Chapter 1, “OnLine Enhance-
ments,” for more information about OnLine error messages.

SQL Error Messages
Most of the following SQL messages are new in this release. A
few of the messages are existing messages that have been revised
in this release. See the Version 7.1 Informix Error Messages manual
for further information on SQL messages.

-322 Cannot create a trigger on, alter, rename view view-name.

You can only create a trigger on a table. Consider creating the
trigger on the table from which the view is derived, or consider
creating view view-name as a table and then creating the trigger
on it.

You can also receive this message if you issue the START
VIOLATIONS TABLE statement or the STOP VIOLATIONS TABLE
statement for a view. You must specify the name of a base table
in both of these statements.

SQL Error Messages
-388 No resource permission.

If you issued a CREATE TABLE, CREATE INDEX, or CREATE PROCEDURE
statement, you cannot execute this statement because your account has not
been granted Resource privilege in this database. You need the Resource
privilege to create permanent tables, indexes on permanent tables, and
procedures.

If you issued a SET statement, START VIOLATIONS TABLE statement, or STOP
VIOLATIONS TABLE statement, you cannot execute this statement because
your account has not been granted Resource privilege in this database. You
need the Resource privilege to execute the SET statement for a constraint,
trigger, or index defined on a table in the current database. You also need the
Resource privilege to execute the START VIOLATIONS TABLE or STOP
VIOLATIONS TABLE statement on a base table in the current database.

To recover from this error, contact a person who has the DBA privilege on this
database and ask to be granted the Resource privilege on the database.

-525 Failure to satisfy referential constraint constraint-name.

During an ALTER TABLE or SET statement, you have added or re-enabled a
referential constraint that is violated by the data in the table. Check that the
data in the referencing column (child key) exists in the referenced column
(parent key).

-710 Table table-name has been dropped, altered, or renamed.

Error -710 can occur with explicitly prepared statements. These statements
have the following form:

PREPARE statement id FROM quoted string

After a statement has been prepared in the database server and before the
user executes it, the table has been renamed or altered, possibly changing the
structure of the table. Problems might occur as a result.

Error -710 can also occur with stored procedures. Before executing a new
stored procedure for the first time, the database server optimizes the code
(statements) in the stored procedure. Optimization makes the code depend
on the structure of the tables that the procedure references. If the table
structure changes after the procedure is optimized and before it is executed,
error -710 can occur.
2 Guide to 7.1 Feature Enhancements

SQL Error Messages
Each stored procedure is optimized the first time that it is run (not when it is
created). This behavior means that a stored procedure might succeed the first
time that it is run and yet fail later under virtually identical circumstances.
The failure of a stored procedure can also be intermittent because failure
during one execution forces an internal warning to reoptimize the procedure
before the next execution.

The database server keeps a list of tables that the stored procedure references
explicitly. Whenever any of these explicitly referenced tables is modified, the
database server reoptimizes the procedure the next time that the procedure
is executed.

However, if the stored procedure depends on a table that is referenced only
indirectly, the database server cannot detect the need to reoptimize the
procedure after that table is changed. For example, a table can be referenced
indirectly if the stored procedure invokes a trigger. If a table that is referenced
by the trigger (but not directly by the stored procedure) is changed, the
database server does not know that it should reoptimize the stored procedure
before running it. When the procedure is run after the table has been
changed, error -710 can occur.

You can prevent error -710 by forcing reoptimization of the stored procedure.
You can force reoptimization by executing the following statement:

UPDATE STATISTICS FOR PROCEDURE procedure name

You can add this statement to your program in either of the following ways:

■ Place the UPDATE STATISTICS statement after each statement that
changes the mode of an object.

■ Place the UPDATE STATISTICS statement before each execution of the
stored procedure.

It is most efficient to place the UPDATE STATISTICS statement with the action
that occurs less frequently in the program (change of object mode or
execution of the procedure). In most cases, the change of object mode occurs
less frequently.

You must execute the UPDATE STATISTICS statement for each stored
procedure that indirectly references the changed tables unless the procedure
also references the tables explicitly.
Error Messages 3

SQL Error Messages
You can use either of the following methods to recover from error -710:

■ You can force reoptimization of the stored procedure by issuing the
UPDATE STATISTICS statement, as described in the preceding
paragraphs.

■ You can rerun the stored procedure.

■ The first time that the stored procedure fails, the database server
marks the procedure as in need of reoptimization. The next time that
you run the procedure, the database server reoptimizes the
procedure before running it. However, running the stored procedure
twice might be neither practical nor safe. Forcing reoptimization of
the procedure by using the UPDATE STATISTICS statement is a safer
choice.

-859 “Distributions Only” is not meaningful in an update statistics LOW request.

You cannot specify the DISTRIBUTIONS ONLY option in the LOW mode of the
UPDATE STATISTICS statement.

-886 Cannot drop table or view because of existing dependencies.

When you issue a DROP TABLE or DROP VIEW statement, you cannot drop the
table or view if you specify the RESTRICT option and a view or foreign-key
constraint exists that depends on that table or view.

You also cannot drop a table if you specify the RESTRICT option and a viola-
tions and diagnostics table exist for that table.

-891 Temporary table objects can only be enabled.

You cannot change the object mode of a temporary table object to the disabled
or filtering object mode.

-892 Cannot disable object object-name due to other active objects using it.

Other objects are using this object. If the object being disabled is an index,
then a unique constraint, primary constraint, or referential constraint might
be using that object. If the object is a unique or a primary-key constraint, then
a referential constraint might be using that object.
4 Guide to 7.1 Feature Enhancements

SQL Error Messages
-893 Cannot activate/create object object-name because of its dependencies.

The user has issued a SET statement to set a database object to the enabled or
filtering object mode, or the user has issued a CREATE INDEX, CREATE
TRIGGER, or CREATE TABLE statement to create a database object in the
enabled or filtering object mode. However, this object needs other disabled
objects. For example, before enabling a referential constraint on a table, the
user must first enable the indexes that the constraint needs.

-894 Cannot find object object-name.

The object name that the user specified explicitly in the SET statement is not
found in the database.

-895 Cannot create violations/diagnostics table.

The user has issued a START VIOLATIONS TABLE statement for a target table.
The database server is not able to create the violations and diagnostics tables
for this target table. Any one of the following situations can be the reason for
the failure:

■ The target table already has a violations and diagnostics table.

■ The names specified for the violations and diagnostics table in the
START VIOLATIONS TABLE statement are not valid. For example, if
you omitted the USING clause from the statement and the number of
characters in the target table name plus four characters is longer than
the maximum identifier length, the generated names of the viola-
tions and diagnostics tables would be longer than the maximum
identifier length. If the names of the violations and diagnostics tables
are invalid for this reason, the user can rectify the problem by giving
explicit names to the violations and diagnostics tables in the USING
clause of the START VIOLATIONS TABLE statement.

■ The names that were specified for the violations and diagnostics
tables in the START VIOLATIONS TABLE statement match the names
of existing tables in the database.

■ The target table contains columns with the names informix_tupleid
or informix_optype. Because these two column names would
duplicate the informix_tupleid or informix_optype columns in the
violations table, the database server cannot create the violations
table.

■ The target table is a temporary table.
Error Messages 5

SQL Error Messages
■ The target table is serving as a violations or diagnostics table for
some other table.

■ The target table is a system catalog table.

-896 Violations table is not started for the target table.

If a violations and diagnostics table have not been started for the target table,
and an INSERT, DELETE, or UPDATE statement fails to satisfy any filtering-
mode object on the target table, the user who issued the INSERT, DELETE, or
UPDATE statement receives this message.

To recover from this error, you must start a violations and diagnostics table
for the target table. Then, when users issue INSERT, DELETE, or UPDATE state-
ments that fail to satisfy filtering-mode objects defined on the table, they do
not receive this message.

-897 Cannot modify/drop a violations/diagnostics table.

The user has tried to alter or drop a table that is serving as a violations table
or a diagnostics table for another table.

-898 Cannot alter a table which has associated violations/diagnostics tables.

The user has tried to add, drop, or modify a column in a table that has a viola-
tions and diagnostics table associated with it.

-899 Too many violations.

The number of records in the diagnostics table either exceeds or will exceed
the limit specified in the MAX ROWS clause of the START VIOLATIONS TABLE
statement. When a single statement on the target table (such as an INSERT or
SET statement) causes more records to be inserted into the diagnostics table
than the limit specified by the MAX ROWS clause, this error is returned to the
user who issued the statement on the target table.

-971 Integrity violations detected.

The user has attempted to change the object mode of a disabled constraint or
disabled unique index to the enabled or filtering mode, but the SET statement
fails because the table contains data that violates the constraint or the unique-
index requirement. If a violations table has been started for the table that
contains the inconsistent data, this message is returned to the user. The
message is returned whether or not the SET statement included the WITH
ERROR option.
6 Guide to 7.1 Feature Enhancements

SQL Error Messages
Similarly, when an INSERT, DELETE, or UPDATE statement causes some
records to be added to the violations table because the statement violates a
filtering mode object, this message is returned to the user if the following two
conditions are true:

■ The SET statement or CREATE statement that specified the filtering
object mode for the object included the WITH ERROR option.

■ No other errors have been encountered during the execution of the
INSERT, DELETE, or UPDATE statement.

-973 Cannot insert from the violations table to the target table.

The user has issued a statement that attempts to insert rows from the viola-
tions table into the target table. For example, the user enters the following
statement:

INSERT INTO mytable SELECT * FROM mytable_vio

If the target table has some filtering mode objects, this error is returned to the
user. The user can recover in any of the following ways:

■ Set the object mode of the filtering objects to some other mode

■ Stop the violations table

■ Insert rows from the violations table into a temporary table, and then
insert rows from the temporary table into the target table

-974 Cannot drop not null constraint on the serial column.

The user has issued a command to drop a NOT NULL constraint on a column
that has a SERIAL data type. Such constraints can be disabled, but they cannot
be dropped before the column is dropped.

-975 Invalid object and object mode combination.

The user has tried to create a new object in an object mode that does not apply
to that object type, or the user has set the object mode of an existing object to
a mode that does not apply to that type of object. For example, if the user tries
to create a trigger in the filtering mode or set an existing trigger to the filtering
mode, the user receives this error.

-976 Table must be fragmented by expression to grant fragment authority.

The user attempted to grant fragment-level privileges on an unfragmented
table or on a table that is not fragmented by expression.
Error Messages 7

SQL Error Messages
-977 No permission on fragment (dbspace-name).

The user does not have the required fragment-level privilege on the table
fragment. This message is always followed by another message that
identifies the privilege that the user lacks. If an INSERT statement fails, the
second message is -271. If an UPDATE statement fails, the second message is
-346. If a DELETE statement fails, the second message is -240.

-978 No insert permission on the violations/diagnostics tables.

The user has issued an INSERT, DELETE, or UPDATE statement on a table with
filtering-mode objects. The user receives this message because the user lacks
the Insert privilege on the violations or diagnostics tables associated with this
table. The user must have the Insert privilege on the violations and
diagnostics tables before the database server can write rows into the viola-
tions and diagnostics tables for that user.

Similarly, if the user has issued a SET statement to change the object mode of
a disabled constraint or a disabled unique index to the enabled or filtering
mode, and if a violations table has been started for the target table, the user
receives this message if the user lacks the Insert privilege on the violations or
diagnostics table associated with the target table.

-19800 Role name already exists as a user or role.

You cannot create a role name identical to any user known to the system or a
user or role known to the database. Change the name of the role.

-19801 Role name cannot be <reserved word>.

You cannot create a role name that is a reserved word. The reserved words
are connect, resource, dba, select, update, delete, insert, index, references, alter,
execute, default, none, null, public. Change the name of the role.

-19802 Name cannot appear as both the role granted and the role grantee.

A role cannot be granted to itself, either directly or indirectly. Verify if the role
granted and grantee are the correct roles. Check for roles already granted to
the role being granted.
8 Guide to 7.1 Feature Enhancements

SQL Error Messages
-19803 Only the DBA, or a user granted the role with the WITH GRANT OPTION can
grant, revoke, or drop a role.

Check your privileges and permissions. You must be the DBA or have been
granted the role with the WITH GRANT OPTION to grant, revoke, or drop a
role.

-19804 The role does not exist.

For a role to exist, the DBA must first create the role using the CREATE ROLE
statement.

-19805 No privilege to set to the role.

Check your privileges and permissions. A user or role must be granted a role
using the GRANT statement before the role can be set.

-19806 Cannot grant database privileges to a role.

A role cannot be granted database-level privileges. Use the GRANT statement
to grant database-level privileges to the user or to PUBLIC.

-19807 Cannot grant privileges to a role WITH GRANT OPTION.

A user granted a role with the WITH GRANT OPTION cannot in turn grant the
role to a user and include the WITH GRANT OPTION. Use the GRANT
statement without the WITH GRANT OPTION.

-19808 User name already exists as a rolename in the database.

A user cannot open a database as a role name that is the same as the user
name. Role names and user names must be unique in the database.

–32507 Cannot set session authorization.

You must obtain the DBA privilege when you execute the SET SESSION
AUTHORIZATION statement. Otherwise, refer to the accompanying error
message for more information.

–32508 Statement is invalid within a transaction.

Abort or commit a transaction before you issue the SET SESSION
AUTHORIZATION statement.
Error Messages 9

DB-Access Error Messages
–32509 Bad session authorization format.

The user name supplied as an argument to the SET SESSION
AUTHORIZATION statement is invalid. You cannot use PUBLIC as a user
name. Supply the user name of a valid user.

-32532 Illegal data type for VARIANCE or STDEV.

Internal error. You cannot compute VARIANCE and STDEV on character,
date/time, or blob columns.

DB-Access Error Messages
-32412 USING clause unsupported. DB-Access will prompt you for a password.

DB-Access does not support the USING password clause in a CONNECT ... USER
statement when it violates security. For example, do not type a password on
the screen where it can be seen or include it in a command file that is readable
by someone other than the user. To maintain security, DB-Access prompts you
to enter the password on the screen and uses echo suppression to hide it from
view.

ON-Archive Error Messages
ARC-01848E INFORMIXDIR not set in environment.

One of the ON-Archive processes failed in an attempt to get the value of the
INFORMIXDIR environment variable. Make sure the environment that
executes the ON-Archive process first sets the INFORMIXDIR environment
variable.

ARC-01849E A dbspace in the list is a temporary dbspace and cannot be archived.

One of the dbspaces listed for the dbspaceset is a temporary dbspace. Change
the definition of the dbspaceset to exclude any temporary dbspaces.
10 Guide to 7.1 Feature Enhancements

SQL API Error Messages
SQL API Error Messages
None of the new features in ESQL/C and ESQL/COBOL generate numbered
error messages. For errors generated by new SQL features, see “SQL Error
Messages.”

Connectivity Error Messages
-27004 Illegal sqlhosts file option/parameter, parameter, for dbservername,

servername.

You specified an invalid option or parameter in your sqlhosts file. Check the
option ID and parameter associated with servername in the sqlhosts file.

-27005 Illegal sqlexecd daemon option, option_value.

You specified an invalid sqlexecd daemon option. Check the option
option_value and its parameter.

-27006 Network driver cannot establish listen endpoint.

You have specified stream pipe (ipcstr) as the network communication type
for this database server. The database server is not able to create the stream
pipe. The most common cause of this error is that another database server on
your network is already using the service name for this database server.

Make sure that the servicename field in the $INFORMIXDIR/etc/sqlhosts file
is unique across all database servers on your network. If the service name is
unique, check the accompanying ISAM code for additional error information.
Error Messages 11

Index

Index
A
Activity log

adding 4-12
using 4-13

Activity log
See ON-Archive activity log.

adtcfg.std 1-20
Aggregate Expression

RANGE function 3-137
segment 3-135
STDEV function 3-137
VARIANCE function 3-138

ALL keyword
syntax in REVOKE 3-62
use

in GRANT 3-46
in REVOKE 3-64

with dbschema utility 3-162, 3-167
ALTER keyword

syntax in REVOKE 3-62
use

in GRANT 3-46
in REVOKE 3-63, 3-65

ALTER privilege 3-46, 3-65
ALTER TABLE statement

ADD clause 3-8
ADD CONSTRAINT clause 3-13
adding

a column constraint 3-9
a table-level constraint 3-14

changes in this release 3-7
DROP CONSTRAINT clause 3-15
MODIFY clause 3-12
privileges necessary to alter a

table 3-7

-ansi flag Intro-8
ANSI compliance 3-75, 3-139, 3-140
ANSI SQL standards 5-3
APART qualifier

ARCHIVE and BACKUP
group 4-17

COPY/VSET command 4-24
ARCHIVE and BACKUP qualifiers

APART 4-17
AUTOVOP 4-17
BLOCKSIZE 4-17
COMMENT 4-17
COPIES 4-18
CRC 4-18
EXPIRY_DATE 4-18
IMMEDIATE 4-19
LOG 4-19
NOAPART 4-17
NOAUTOVOP 4-17
NOCRC 4-18
NOEXPIRY_DATE 4-19
NOIMMEDIATE 4-19
NOLOG 4-19
NONOTIFY 4-19
NOTIFY 4-19
NOTRANSIT 4-20
NOVERIFY 4-20
syntax 4-16
TRANSIT 4-20
VERIFY 4-20
VSET 4-20

arp command 2-11
Asterisk, as wildcard in hostname

field 2-8
Automating backups with event

alarm script 4-10

AUTOVOP qualifier
ARCHIVE and BACKUP

group 4-17
COPY/VSET command 4-24
description 4-6
example 4-6
MODIFY/COMMAND

command 4-31
RETRIEVE/DBSPACESET

command 4-34
RETRIEVE/LOGFILE

command 4-36
using 4-6

B
BACKUP command. See ARCHIVE

and BACKUP qualifiers.
BLOCKSIZE qualifier

ARCHIVE and BACKUP
group 4-17

COPY/VSET command 4-24
Buffer-size option, in options

field 2-15

C
Client application

wildcard addressing 2-10
Column

adding with ALTER TABLE 3-8
constraints, adding with ALTER

TABLE 3-9
defining 3-28
modifying with ALTER

TABLE 3-12
specifying with CREATE

TABLE 3-28
Command file, using to connect to

database server 6-7
COMMAND qualifier

MODIFY/COMMAND
command 4-31

Command qualifiers
using with each other 4-7

COMMENT qualifier
ARCHIVE and BACKUP

group 4-17
COPY/VSET command 4-24
MODIFY/COMMAND

command 4-31
Configuration parameter

ADTERR 1-20
ADTMODE 1-20
ADTPATH 1-20
ADTSIZE 1-20
BUFFERS 1-4, 1-5
CHUNKS 1-3
DBSPACES 1-3
dynamic 1-4
LOCKS 1-4, 1-6
LRUS 1-4, 1-5
NETTYPE 1-4, 1-6
NUMAIOVPS 1-4, 1-6
ONDBSPDOWN 1-11
OPCACHEMAX 1-21
SHMVIRSIZE 1-5
SHMVIRTSIZE 1-4
static 1-3
TBLSPACES 1-3
TRANSACTIONS 1-3
USERTHREADS 1-3

Configuration parameter use
auditing 1-20
changes to default of dependent

parameters 1-4
converting to dynamic

parameters 1-4
enabling Logs Full HWM 1-17
static configuration 1-3
static versus dynamic 1-4

CONNECT keyword
in REVOKE 3-67

Connect privilege 3-67
CONNECT statement

changes in this release 3-16
error returned by USING clause in

interactive mode 6-7
error returned by USING clause

on SQL menu 6-5
on DB-Access SQL menu 6-5
with DB-Access 6-3

CONNECTION menu in DB-Access
how to access 6-4
PASSWORD prompt screen 6-4
USER NAME prompt screen 6-4

Constraint
adding with ALTER TABLE 3-9,

3-12, 3-13, 3-14, 3-92
dropping with ALTER

TABLE 3-15
NOT NULL 3-9, 3-29

in syscoldepend table 3-142,
3-143

object modes for 3-9, 3-29
setting with SET 3-77

specifying at column level 3-29
specifying at table level 3-31
transaction mode 3-101

Conventions
command-line Intro-11
example code Intro-11
syntax Intro-6
typographical Intro-5

COPIES qualifier
ARCHIVE and BACKUP

group 4-18
COPY/VSET command

APART qualifier 4-24
AUTOVOP 4-24
BLOCKSIZE 4-24
COMMENT 4-24
CRC 4-24
description 4-21
DESTINATION 4-24
example 4-26
example of new syntax 4-26
IMMEDIATE 4-25
new syntax for 4-21
NOAPART qualifier 4-24
NOAUTOVOP 4-24
NOIMMEDIATE 4-25
NONOTIFY 4-25
NOTIFY 4-25
NOTRANSIT 4-26
REQUEST 4-25
syntax 4-23
TRANSIT 4-25
VSET 4-26
WAIT 4-26
2 Guide to 7.1 Feature Enhancements

COPY/VSET/REQUEST command
new syntax for 4-21

CRC qualifier
ARCHIVE and BACKUP

group 4-18
COPY/VSET command 4-24

CREATE INDEX statement
changes in this release 3-17
specifying object mode 3-17
syntax 3-17

CREATE PROCEDURE statement
changes in this release 3-24
restrictions on called

procedures 3-24
use of dbschema 3-163

CREATE ROLE statement 3-26
CREATE SYNONYM statement

use of dbschema 3-163
CREATE TABLE statement

changes in this release 3-28
defining columns 3-28
defining constraints

at column level 3-29
at table level 3-31

syntax 3-28
use of dbschema 3-163

CREATE TRIGGER statement
changes in this release 3-33
rules for stored procedures 3-35
specifying object modes 3-34
syntax 3-33

CREATE VIEW statement
use of dbschema 3-163

CTRL-C
cancelling during logical

restore 4-4

D
Data distribution

effect of DISTRIBUTIONS ONLY
option 3-131

Database
renaming 3-57

Database object
meaning in SET statement 3-78

Database-level privilege
revoking 3-67

Database, stores7 Intro-15
DBA keyword

in REVOKE 3-67
DB-Access

connecting to database server in
interactive non-menu
mode 6-6

connecting to database server
with command file or shell
file 6-7

connecting to database server
with CONNECTION
menu 6-4

connecting to database server
with SQL menu 6-5

CONNECTION menu 6-4
enhancements described 6-3
PASSWORD prompt screen 6-4
SQL menu 6-5
USER NAME prompt screen 6-4
using CONNECT in command

file 6-7
using CONNECT in shell file 6-7

dbexport utility 3-158
dbload utility 3-159
DBPATH environment variable 5-8
dbschema utility

create schema for a database 3-163
description of 3-161
options

obtaining privilege
schema 3-165

obtaining synonym
schema 3-165

specifying a table, view, or
procedure 3-167

specifying the role schema 3-168
owner conventions 3-164

DBSPACE qualifier
LIST/RECOVERY command 4-27
RETRIEVE/DBSPACESET

command 4-34
DBSPACESET qualifier

RETRIEVE/DBSPACESET
command 4-34

Deadlock prevention 1-16
Default, for SQL statement syntax

options Intro-12

DELETE keyword
syntax in REVOKE 3-62
use in REVOKE 3-63

DELETE qualifier
MODIFY/COMMAND

command 4-31
Delimited identifier 3-139, 5-3
Demonstration database

copying Intro-17
installation script Intro-15
overview Intro-15

DESTINATION qualifier
COPY/VSET command 4-24

Diagnostic information 1-26
Diagnostics table

and DROP TABLE statement 3-39
creating with START

VIOLATIONS TABLE 3-109
displayed by dbexport

utility 3-158
displayed by dbschema

utility 3-173
examples 3-87, 3-93, 3-124, 3-126,

3-129
how to start 3-83, 3-109
how to stop 3-83, 3-128
privileges on 3-122
relationship to target table 3-114
relationship to violations

table 3-114
structure 3-121
use with SET 3-82
when to START 3-82

Diamond symbol, used with
product icons Intro-10

Directory
/INFORMIXTMP 2-16
/tmp 2-16

Disabled object mode
benefits of 3-99
defined 3-86

Disabling I/O error
causes of 1-11
circumstances under which they

occur 1-10
dealing with nondestructive 1-12
defined 1-10
destructive versus

nondestructive 1-11
Index 3

managing 1-11
monitoring using event

alarms 1-15
monitoring using message

log 1-14
DISK qualifier

RETRIEVE/DBSPACESET
command 4-34

RETRIEVE/LOGFILE
command 4-36

Display label
with SELECT 3-75, 3-140

Display schema for a database 3-163
Documentation notes Intro-14
DROP ROLE statement 3-38
DROP TABLE statement 3-39

CASCADE keyword 3-39
RESTRICT keyword 3-39
use

with diagnostics tables 3-39
with violations tables 3-39

Dynamic allocation of resources 1-3
Dynamic configuration parameter

and OnLine architecture 1-7
converting to 1-4
described 1-4
error messages 1-7

E
Enabled object mode

benefits of 3-100
defined 3-86

Environment variable
DBPATH 5-8
INFORMIXOPCACHE 3-151
INFORMIXSERVER 5-8
INFORMIXSQLHOSTS 3-152
NODEFDAC 3-153
OPTCOMPIND 3-154
PSORT_NPROCS 3-155

Error messages
disabling I/O 1-10
for dynamic configuration

parameters 1-7
Error, for USING clause of

CONNECT statement 6-5, 6-7

Event alarm sample script
automating backups 4-10
described 4-11
logevent.sh file 4-11
ONCONFIG file 4-11
steps to use 4-11
understanding 4-11
using 4-10

Event alarms
for automated backups 4-10
sample script for 4-4
using 4-10

EXPIRY_DATE qualifier
ARCHIVE and BACKUP

group 4-18
Extension, to SQL

symbol for Intro-8

F
File

adtcfg.std 1-20
onconfig.std 1-20
servicename.str 2-16
VP.servername.nnC 2-16
.inf.servicename 2-16
/INFORMIXTMP/servicename.e

xp 2-4
/INFORMIXTMP/servicename.s

tr 2-4
Filtering object mode

benefits of 3-100
defined 3-86

Fragment-level privilege
granting with GRANT

FRAGMENT 3-48
revoking with REVOKE

FRAGMENT 3-70
Function library

sqgetdbs() 5-7

G
GET DIAGNOSTICS statement

changes in this release 3-41
SQLSTATE codes 3-41

GRANT FRAGMENT statement
AS grantor clause 3-55
displayed by dbschema

utility 3-173
ESQL defined constant 5-4
syntax 3-48
usage 3-48
WITH GRANT OPTION

clause 3-55
GRANT statement

ALL option 5-5
role privileges 3-45
syntax 3-43
table-level privileges

ALL keyword 3-46
ALTER keyword 3-46

use of dbschema 3-163
Group privileges. See Roles.

H
hostname field

enhancements 2-6
maximum length 2-6
using IP addresses 2-7
wildcard addressing 2-8

I
Icon, explanation of Intro-7
Identifier segment

changes in this release 3-139
delimited identifier 3-139

IMMEDIATE qualifier
ARCHIVE and BACKUP

group 4-19
COPY/VSET command 4-25
description 4-4
example 4-5
MODIFY/COMMAND

command 4-31
RETRIEVE/DBSPACESET

command 4-34
4 Guide to 7.1 Feature Enhancements

RETRIEVE/LOGFILE
command 4-36

using 4-4
Index

creating with CREATE
INDEX 3-17

object modes for 3-17
unique, adding when duplicate

values exist 3-21, 3-92
INDEX keyword

syntax in REVOKE 3-62
use in REVOKE 3-63

INFORMIXOPCACHE
environment variable 3-151

INFORMIXSERVER environment
variable 5-8

INFORMIXSQLHOSTS
environment variable 2-5, 3-152

/INFORMIXTMP directory 2-16
/INFORMIXTMP/servicename.ex

p file 2-4
/INFORMIXTMP/servicename.str

file 2-4
.inf.servicename, location of 2-16
INSERT keyword

syntax in REVOKE 3-62
use in REVOKE 3-63

Interrupting a logical restore 4-10
Interrupting the ondatartr

utility 4-10
IP address

how to find 2-7
use in hostname field 2-7

K
Keep-alive option, in options

field 2-13

L
List-mode format, in SET 3-78
LIST/RECOVERY command

DBSPACE qualifier 4-27
description 4-8, 4-26
example 4-28
generating reports 4-26

RECOVERY qualifier 4-27
syntax 4-27

Log archive events
adding activity log 4-12

LOG qualifier
ARCHIVE and BACKUP

group 4-19
LOGFILE qualifier

RETRIEVE/LOGFILE
command 4-37

Logical log
backing up 1-16
how to prevent logs full 1-16
monitoring for fullness using

message log 1-18
monitoring for fullness using

onstat 1-18
preserving space in 1-16

Logical restore interrupt
cancelling 4-4
prompt 4-10

Logs-Full High-Water Mark 1-16

M
Machine notes Intro-14
MAX_SPACE qualifier

RETRIEVE/DBSPACESET
command 4-35

Memory
specifying size of 1-21

MODIFY/COMMAND command
AUTOVOP 4-31
COMMAND 4-31
COMMENT 4-31
DELETE 4-31
description 4-29
example 4-32
IMMEDIATE 4-31
NOAUTOVOP 4-31
NOIMMEDIATE 4-31
OUTPUT 4-31
syntax 4-30
VSET 4-31

Mounted stream. See Stream pipe.

N
Named stream pipe. See Stream

pipe connection.
nettype field

list of values 2-6
onipcstr 2-6

NOAPART qualifier
ARCHIVE and BACKUP

group 4-17
COPY/VSET command 4-24

NOAUTOVOP qualifier
ARCHIVE and BACKUP

group 4-17
COPY/VSET command 4-24
description 4-7
example 4-7
MODIFY/COMMAND

command 4-31
RETRIEVE/DBSPACESET

command 4-34
RETRIEVE/LOGFILE

command 4-36
using 4-7

NOCRC qualifier
ARCHIVE and BACKUP

group 4-18
NODEFDAC environment

variable 3-153
effects on new stored

procedure 3-24
effects on new tables 3-32

NOEXPIRY_DATE qualifier,
ON-Archive

ARCHIVE and BACKUP
group 4-19

NOIMMEDIATE qualifier
ARCHIVE and BACKUP

group 4-19
COPY/VSET command 4-25
description 4-5
example 4-5
MODIFY/COMMAND

command 4-31
RETRIEVE/DBSPACESET

command 4-34
RETRIEVE/LOGFILE

command 4-37
using 4-5
Index 5

NOLOG qualifier
ARCHIVE and BACKUP

group 4-19
NONOTIFY qualifier

ARCHIVE and BACKUP
group 4-19

COPY/VSET command 4-25
NOT NULL constraint 3-9, 3-29

in syscoldepend table 3-142, 3-143
NOTIFY qualifier

ARCHIVE and BACKUP
group 4-19

COPY/VSET command 4-25
NOTRANSIT qualifier

ARCHIVE and BACKUP
group 4-20

COPY/VSET command 4-26
NOVERIFY qualifier

ARCHIVE and BACKUP
group 4-20

O
Object mode

disabled
benefits of 3-99
defined 3-86

displayed by dbexport
utility 3-158

displayed by dbschema
utility 3-173

enabled
benefits of 3-100
defined 3-86

examples 3-87, 3-93
filtering

benefits of 3-100
defined 3-86
error options in SET 3-81

for constraints 3-9, 3-29
for indexes 3-17
for triggers 3-34
meaning in SET statement 3-78
privileges required for

changing 3-78
setting with SET 3-77
use

with data definition
statements 3-92

with data manipulation
statements 3-86

Object, database
meaning in SET statement 3-78

ON-Archive
new command 4-8
new features 4-3
syntax enhancements 4-21
understanding changes and

enhancements 4-3
ON-Archive activity log

ACTIVITYLOG parameter 4-12
adding 4-12
creating 4-12
description 4-4, 4-12
editing the config.arc file 4-12
example 4-13
file permissions 4-12
output 4-13
significant features described 4-14
using 4-13

ON-Archive command qualifiers
COPY/VSET command 4-21
LIST/RECOVERY command 4-26
using with each other 4-7

ON-Archive utility
COPY/VSET 4-21
enhancements 4-8
LIST/RECOVERY 4-26
MODIFY/COMMAND 4-29
onarchive 4-3, 4-4, 4-8
onautovop 4-3, 4-8, 4-9
oncatlgr 4-3, 4-8, 4-9
ondatartr 4-4, 4-8, 4-10, 4-36
RETRIEVE/DBSPACESET 4-33
RETRIEVE/LOGFILE 4-36
using 4-8
using new qualifiers 4-4

onarchive utility
before starting 4-8
new command 4-3
new qualifiers 4-3, 4-4

onautovop utility
before starting 4-8
enhancement 4-9
executing specific requests 4-3
-r option 4-8, 4-9

oncatlgr utility
automatically executing 4-3
automatically starting 4-8, 4-9
enhancements that start 4-9

onconfig.std 1-20
ondatartr utility

cancelling a logical restore
interrupt 4-4

interrupting 4-10
interrupting a logical restore 4-8
RETRIEVE/LOGFILE

command 4-36
ONDBSPDOWN

abort mode 1-12
continue mode 1-11
wait mode 1-12

On-line
files Intro-14
help Intro-15

OnLine architecture 1-7
onmode utility

-F option 1-7
-O option 1-12
syntax 1-13

onstat utility
improved diagnostic

information 1-26
-O option 1-24

OPCACHEMAX configuration
parameter 1-21

OPTCOMPIND environment
variable 3-154

Optical cache
number of blobs 1-25
number of blobs written 1-25
number of blobs written to

staging area 1-26
number of kilobytes 1-25
number of kilobytes of blobs

written 1-26
number of kilobytes of blobs

written to staging area 1-26
session id for user 1-25
userid of client 1-25

Optical memory cache
allocation 1-25
availability of memory 1-25
described 1-24
6 Guide to 7.1 Feature Enhancements

number of blobs 1-25
size 1-25

Optimizer
with UPDATE STATISTICS 3-133

options field
buffer-size option 2-15
keep-alive option 2-13
list of options 2-12
security option 2-14
syntax rules 2-16

OUTPUT qualifier, ON-Archive
MODIFY/COMMAND

command 4-31
OWNER mode, discontinued 4-4
Owner, in dbschema 3-164

P
Password

prompt in DB-Access interactive
mode 6-6

prompt on DB-Access
PASSWORD screen 6-4

Privilege
encoded in system catalog 3-147,

3-148
for a role, described in

sysroleauth 3-147
fragment-level

defined 3-52
duration of 3-53
granting with GRANT

FRAGMENT 3-48
revoking with REVOKE

FRAGMENT 3-70
role in command validation 3-53

granting to roles 3-45
on a table fragment 3-48, 3-70
preventing to PUBLIC 3-153
user, described in sysusers

table 3-148
PRIVILEGE configuration

parameter
changes to 4-4, 4-15
OWNER mode discontinued 4-4,

4-15

PRIVILEGES keyword
syntax in REVOKE 3-62
use in REVOKE 3-63

PSORT_NPROCS environment
variable 3-155

PUBLIC keyword
use in REVOKE 3-62

Q
Qualifiers

See ARCHIVE and BACKUP
qualifiers.

Quotes, single and double Intro-7

R
RANGE function 3-137
RECOVERY qualifier

LIST/RECOVERY command 4-27
REFERENCES keyword

syntax in REVOKE 3-62
use in REVOKE 3-63

Release notes Intro-14
RENAME DATABASE

statement 3-57
REQUEST qualifier

COPY/VSET command 4-25
RESOURCE keyword

use in REVOKE 3-67
RETRIEVE/DBSPACESET

command
AUTOVOP 4-34
DBSPACE 4-34
DBSPACESET 4-34
description 4-33
DISK 4-34
IMMEDIATE 4-34
MAX_SPACE 4-35
NOAUTOVOP 4-34
NOIMMEDIATE 4-34
SALVAGELOGS 4-35
syntax 4-33
TAPE 4-35

RETRIEVE/LOGFILE command
AUTOVOP 4-36
description 4-36
DISK 4-36

IMMEDIATE 4-36
LOGFILE 4-37
NOAUTOVOP 4-36
NOIMMEDIATE 4-37
ondatartr 4-36
syntax 4-36
TAPE 4-37

REVOKE FRAGMENT statement
changes in this release 3-70
ESQL defined constant 5-4
syntax 3-70

REVOKE statement
ALL option 5-5
changes in this release 3-58
column-specific privileges 3-64
database-level privileges 3-67
privileges needed 3-60
RESTRICT option 3-66
role 3-58
syntax 3-59
table-level privileges

ALL keyword 3-64
ALTER keyword 3-65
description 3-62

Role
creating with CREATE ROLE

statement 3-26
definition 3-26
dropping with DROP ROLE

statement 3-38
enabling with SET ROLE 3-105
granting privileges with GRANT

statement 3-45
revoke user 3-58
revoking privileges with

REVOKE 3-61
set 3-105
using with stored procedures 3-24
using with triggers 3-35

S
SALVAGELOGS qualifier

RETRIEVE/DBSPACESET
command 4-35

Sample program, risnull 5-8
Index 7

Sample script
for event alarms 4-4, 4-11
logevent.sh file 4-11
ONCONFIG file 4-11
steps to use 4-11

Security option, in options
field 2-14

SELECT keyword
syntax in REVOKE 3-62
use in REVOKE 3-63

SELECT statement
changes in this release 3-75
display label 3-75, 3-140
SELECT clause 3-75, 3-140

SERIAL data type
treatment by dbschema 3-164

servername field
sqlhosts file 2-6

servicename field
stream pipe connections 2-4
using the TCP listen port

number 2-11
SET ROLE statement 3-105
SET SESSION AUTHORIZATION

statement 3-107
SET statement

error options 3-81
ESQL defined constant 5-4
list mode format 3-78
privileges required for

executing 3-78
purpose 3-77
relationship to START

VIOLATIONS TABLE 3-82,
3-111

relationship to STOP
VIOLATIONS TABLE 3-83

syntax 3-77
table mode format 3-78
use

in setting transaction mode of
constraints 3-101

with data definition
statements 3-92

with data manipulation
statements 3-86

with diagnostics tables 3-82
with violations tables 3-82

Shell file, using to connect to
database server 6-7

sqgetdbs() library function 5-7
SQL Communications Area

(SQLCA). See SQLCA structure.
SQL menu in DB-Access 6-5
SQL statement

ALTER TABLE 3-7
ANSI-compliant 5-3
CONNECT 3-16
CREATE INDEX 3-17
CREATE PROCEDURE 3-24
CREATE ROLE 3-26
CREATE TABLE 3-28
CREATE TRIGGER 3-33
defined constants 5-4
DROP ROLE 3-38
DROP TABLE 3-39
GET DIAGNOSTICS 3-41
GRANT 5-5
GRANT FRAGMENT 3-48, 5-4
RENAME DATABASE 3-57
REVOKE 3-58, 5-5
REVOKE FRAGMENT 3-70, 5-4
SELECT 3-75
SET 3-77, 5-4
SET ROLE 3-105
SET SESSION

AUTHORIZATION 3-107
START VIOLATIONS

TABLE 3-109, 5-4
STOP VIOLATIONS

TABLE 3-128, 5-4
UPDATE STATISTICS 3-130

SQLCA structure 3-174, 5-6
sqlhosts file

enhancements 2-5
hostname field 2-6
nettype field 2-6
nettype values 2-6
options field 2-12
servername field 2-6
servicename field 2-4, 2-11

SQLSTATE code
retrieved by GET

DIAGNOSTICS 3-41
SQLSTATE variable 3-41, 5-6
sqlstype.h header file 5-4
SQLWARN array 3-175

SQLWARN structure 5-6
SQL, error messages A-1
START VIOLATIONS TABLE

statement 3-109, 5-4
privileges required for

executing 3-112
relationship to SET 3-82, 3-111
relationship to STOP

VIOLATIONS TABLE 3-111
syntax 3-109

Static configuration parameters 1-3
STDEV function 3-137
STOP VIOLATIONS TABLE

statement 3-128, 5-4
privileges required for

executing 3-129
relationship to SET 3-83
relationship to START

VIOLATIONS TABLE 3-111
syntax 3-128

Stored procedure
calling in data manipulation

statement 3-24
creating with CREATE

PROCEDURE 3-24
revoking privileges on 3-60

stores7 database
copying Intro-17
creating on INFORMIX-OnLine

Dynamic Server Intro-17
overview Intro-15

Stream pipe connection
advantages and

disadvantages 2-5
description 2-3
file,

/INFORMIXTMP/servicena
me.exp 2-4

file,
/INFORMIXTMP/servicena
me.str 2-4

file,
/INFORMIXTMP/servicena
me.str file 2-16

servicename field 2-4
Syntax diagram

conventions Intro-6
elements of Intro-9

syscolauth system catalog table 3-62
8 Guide to 7.1 Feature Enhancements

syscoldepend system catalog
table 3-142

sysconstraints system catalog
table 3-143

sysfragauth system catalog
table 3-144

sysobjstate system catalog
table 3-146

sysroleauth system catalog
table 3-147

systabauth system catalog
table 3-62

System catalog
syscolauth 3-62
syscoldepend 3-142
sysconstraints 3-143
sysfragauth 3-144
sysobjstate 3-146
sysroleauth 3-147
systabauth 3-62
sysusers 3-148
sysviolations 3-149

System monitoring interface (SMI)
tables

sysptprof 1-31
sysusers system catalog table 3-148
sysviolations system catalog

table 3-149

T
Table

adding a column with ALTER
TABLE 3-8

adding a constraint 3-9, 3-12, 3-13,
3-14

altering with ALTER TABLE 3-7
creating a table 3-28
defining columns 3-28
diagnostic 3-121
dropping a constraint 3-15
target 3-114
violations 3-113

Table mode format, in SET 3-78
Table-level privilege

column-specific privileges 3-64
revoking 3-62

TAPE qualifier
RETRIEVE/DBSPACESET

command 4-35
RETRIEVE/LOGFILE

command 4-37
Target table

relationship to diagnostics
table 3-114

relationship to violations
table 3-114

TCP/IP connection
using a wildcard 2-8
using the internet IP address 2-7
using the TCP listen port

number 2-11
TCP/IP listen port number

finding the value 2-11
in servicename field 2-11

/tmp directory 2-16
Transaction mode, for

constraints 3-101
TRANSIT qualifier

ARCHIVE and BACKUP
group 4-20

COPY/VSET command 4-25
Trigger

creating 3-33
object modes for 3-34

setting with SET 3-77
Typographical conventions Intro-5

U
UPDATE keyword

syntax in REVOKE 3-62
use in REVOKE 3-63

UPDATE STATISTICS
statement 3-130

creating data distributions 3-131
DISTRIBUTIONS ONLY

option 3-131
optimizing search strategies 3-133
recommended procedure for

using 3-133
syntax 3-131
using the HIGH keyword 3-131
using the MEDIUM

keyword 3-131

USER clause of CONNECT
statement 6-3

in DB-Access command file 6-7
in DB-Access interactive mode 6-6
in DB-Access shell file 6-7
on DB-Access SQL menu 6-5

USER function
as affected by ANSI

compliance 3-67
User name

in command or shell file 6-7
in CONNECT statement 6-6
prompt on DB-Access USER

NAME screen 6-4
User privileges, described in

sysusers table 3-148
USING clause of CONNECT

statement, error returned 6-5,
6-7

Utility
dbexport 3-158
dbload 3-159
dbschema 3-161
onmode 1-7, 1-12, 1-13
onstat 1-24
See also ON-Archive utility.

V
VARIANCE function 3-138
VERIFY qualifier

ARCHIVE and BACKUP
group 4-20

View
display description with

dbschema 3-163
Violations table

and DROP TABLE statement 3-39
creating with START

VIOLATIONS TABLE 3-109
displayed by dbexport

utility 3-158
displayed by dbschema

utility 3-173
examples 3-87, 3-93, 3-117, 3-120,

3-129
how to start 3-83, 3-109
how to stop 3-83, 3-128
Index 9

privileges on 3-115
relationship to diagnostics

table 3-114
relationship to target table 3-114
structure 3-113
use with SET 3-82
when to start 3-82

VP.servername.nnC file, location
of 2-16

VSET qualifier
ARCHIVE and BACKUP

group 4-20
COPY/VSET command 4-26
MODIFY/COMMAND

command 4-31

W
WAIT qualifier

COPY/VSET command 4-26
Wildcard addressing

by a client application 2-10
example 2-9
in hostname field 2-8

X
X/Open

specifications, icon for Intro-10

Y
ypmatch command 2-11
10 Guide to 7.1 Feature Enhancements

	Informix Online Documentation
	Table of Contents
	Introduction
	Informix Products Covered in this Guide
	Other Useful Documentation
	How to Use This Guide
	Typographical Conventions
	Syntax Conventions
	Icons in the Text
	Example Code Conventions
	Command-Line Conventions

	Useful On-Line Files
	ASCII and PostScript Error Message Files
	The Demonstration Database
	Creating the Demonstration Database

	Compliance with Industry Standards
	New Features in Informix Version 7.1UD1 Products
	Changes to INFORMIX-OnLine Dynamic Server
	Changes to Connectivity
	Changes to SQL
	Changes to SQL APIs
	Changes to DB-Access
	Other Changes

	OnLine Enhancements
	Dynamic Allocation of Resources
	Changes to the Default Values of Dependent Paramet...
	BUFFERS
	LRUS
	SHMVIRTSIZE
	NETTYPE
	LOCKS
	NUMAIOVPS

	Changes in OnLine Architecture Associated with Dyn...
	Error Messages Associated with Dynamic Allocation ...

	Controlling How OnLine Reacts to I/O Errors
	What Are Disabling I/O Errors?
	What Causes Disabling I/O Errors?
	New Alternatives for Dealing with Disabling I/O Er...
	CONTINUE or 0
	ABORT or 1
	WAIT or 2
	Using onmode -O to Override ONDBSPDOWN WAIT Mode

	Monitoring OnLine for Disabling I/O Errors
	Monitoring Disabling I/O Errors Using the Message ...
	Monitoring Disabling I/O Errors Using Event Alarms...

	Preserving Log Space for Administrative Tasks
	Enabling the Logs-Full High-Water Mark
	Monitoring the Logical Log for Fullness Using the ...
	Monitoring the Logical Log for Fullness Using onst...
	Cases Where You Must Still Use Emergency Log Backu...
	Building the System Monitoring Interface
	Recovery
	Small Logs, Many Users
	Administrative Activity When Logs Need Backing Up

	Auditing Configuration Parameters
	OPCACHEMAX Configuration Parameter
	OnLine Algorithm for Determining DS_TOTAL_MEMORY
	Derive a Minimum for Decision-Support Memory
	Derive a Working Value for Decision-Support Memory...
	When DS_TOTAL_MEMORY Is Set
	When DS_TOTAL_MEMORY Is Not Set

	Check Derived Value for Decision-Support Memory
	Inform User When Derived Value Is Different from U...

	New Default for OPTCOMPIND
	Enhancements to the onstat Utility
	onstat -O option
	Improved Diagnostic Information
	Changes to onstat -u Output
	Change to onstat -x Output

	Parallel Inserts
	Explicit Inserts Using SELECT...INTO TEMP
	Implicit Inserts Using INSERT INTO...SELECT

	Enhancements to Existing SMI Tables
	syssessions
	syssesprof
	sysptprof
	sysprofile

	Connectivity Enhancements
	Stream Pipes
	Description of Stream Pipes
	The sqlhosts Entries for Stream Pipes
	Advantages and Disadvantages of Stream Pipes

	Enhancements to the sqlhosts File
	The servername Field
	The nettype Field
	The hostname Field
	Length of the hostname Entry
	Using an IP Address with TCP/IP Connections
	Wildcard Addressing with TCP/IP Connections
	Using Wildcard Addressing

	The servicename Field
	The options Field
	The keep-alive Option
	The Security Option
	The Buffer-Size Option
	Syntax Rules for the options Field

	The /INFORMIXTMP Directory
	Size Option for the INFORMIX-SE sqlexecd Log File
	The -l Option
	The -f Option
	Calculating the Maximum Size of the Log File

	SQL Enhancements
	How to Use This Chapter
	Scope of Descriptions
	Relationship of This Chapter to SQL Manuals
	Organization of This Chapter

	New and Changed SQL �Statements
	ALTER TABLE
	CONNECT
	CREATE INDEX
	CREATE PROCEDURE
	CREATE ROLE
	CREATE TABLE
	CREATE TRIGGER
	DATABASE
	DROP ROLE
	DROP TABLE
	GET DIAGNOSTICS
	GRANT
	GRANT FRAGMENT
	RENAME DATABASE
	REVOKE
	REVOKE FRAGMENT
	SELECT
	SET
	SET ROLE
	SET SESSION AUTHORIZATION
	START VIOLATIONS TABLE
	STOP VIOLATIONS TABLE
	UPDATE STATISTICS

	Changed SQL Segments
	Aggregate Expression
	Identifier Segment

	New and Changed System �Catalog Tables
	SYSCOLDEPEND
	SYSCONSTRAINTS
	SYSFRAGAUTH
	SYSOBJSTATE
	SYSROLEAUTH
	SYSUSERS
	SYSVIOLATIONS

	New and Changed Environment �Variables
	INFORMIXOPCACHE
	 INFORMIXSQLHOSTS
	NODEFDAC
	OPTCOMPIND
	PSORT_NPROCS

	Changed Utilities
	The dbexport Utility
	The dbload Utility
	The dbschema Utility

	Changes to the SQL �Communications Area
	SQLWARN Array

	ON-Archive Feature Enhancements
	Understanding ON-Archive Enhancements and Changes
	Features Added to ON-Archive
	Change to PRIVILEGE Parameter

	Using New ON-Archive Qualifiers
	Using the IMMEDIATE Qualifier
	Using the NOIMMEDIATE Qualifier
	Using the AUTOVOP Qualifier
	Using the NOAUTOVOP Qualifier

	Using Command Qualifiers with Each Other
	New ON-Archive Command
	Using Enhanced ON-Archive Utilities
	Utility Enhancement for onautovop
	Utility Enhancements That Automatically Start onca...
	Interrupt Enhancement to the ondatartr Utility

	Automating Backups Using an Event Alarm Script
	Understanding the Sample Script

	Adding an ON�Archive Activity Log to Log Archive E...
	Using the ON-Archive Activity Log

	Change to the PRIVILEGE Configuration Parameter
	ARCHIVE and BACKUP Qualifiers
	ON-Archive Syntax Enhancements
	The COPY/VSET and COPY/VSET/REQUEST Commands
	The LIST/RECOVERY Command
	The MODIFY/COMMAND Command
	RETRIEVE/DBSPACESET Command
	The RETRIEVE/LOGFILE Command

	SQL API Enhancements
	Flagging Informix Extensions
	Identifying New SQL Statements
	New Warning Values
	New ESQL/C Function
	sqgetdbs()

	DB-Access Enhancements
	USER Clause of CONNECT Statement
	The CONNECTION Menu
	The SQL Menu
	Interactive Non-Menu and Background Modes
	Connecting in Interactive Non-Menu Mode
	Connecting with a File or Shell File in Background...

	Error Messages
	Index

